Controlled Random Search Improves Sample Mining and Hyper-Parameter Optimization

A common challenge in machine learning and related fields is the need to efficiently explore high dimensional parameter spaces using small numbers of samples. Typical examples are hyper-parameter optimization in deep learning and sample mining in predictive modeling tasks. All such problems trade-off exploration, which samples the space without knowledge of the target function, and exploitation where information from previous evaluations is used in an adaptive feedback loop. Much of the recent focus has been on the exploitation while exploration is done with simple designs such as Latin hypercube or even uniform random sampling. In this paper, we introduce optimal space-filling sample designs for effective exploration of high dimensional spaces. Specifically, we propose a new parameterized family of sample designs called space-filling spectral designs, and introduce a framework to choose optimal designs for a given sample size and dimension. Furthermore, we present an efficient algorithm to synthesize a given spectral design. Finally, we evaluate the performance of spectral designs in both data space and model space applications. The data space exploration is targeted at recovering complex regression functions in high dimensional spaces. The model space exploration focuses on selecting hyper-parameters for a given neural network architecture. Our empirical studies demonstrate that the proposed approach consistently outperforms state-of-the-art techniques, particularly with smaller design sizes.

[1]  Mark A. Z. Dippé,et al.  Antialiasing through stochastic sampling , 1985, SIGGRAPH.

[2]  Peter Richtárik,et al.  Importance Sampling for Minibatches , 2016, J. Mach. Learn. Res..

[3]  Pramod K. Varshney,et al.  Theoretical guarantees for poisson disk sampling using pair correlation function , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[4]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[5]  Mohamed S. Ebeida,et al.  Efficient maximal poisson-disk sampling , 2011, ACM Trans. Graph..

[6]  Pieter Abbeel,et al.  Interpretable and Pedagogical Examples , 2017, ArXiv.

[7]  Pramod K. Varshney,et al.  Stair blue noise sampling , 2016, ACM Trans. Graph..

[8]  J. Yellott Spectral consequences of photoreceptor sampling in the rhesus retina. , 1983, Science.

[9]  Pramod K. Varshney,et al.  A Spectral Approach for the Design of Experiments: Design, Analysis and Algorithms , 2017, J. Mach. Learn. Res..

[10]  Mohamed S. Ebeida,et al.  A Simple Algorithm for Maximal Poisson‐Disk Sampling in High Dimensions , 2012, Comput. Graph. Forum.

[11]  Art B. Owen,et al.  Monte Carlo and Quasi-Monte Carlo for Statistics , 2009 .

[12]  Markus Gross,et al.  Analysis and synthesis of point distributions based on pair correlation , 2012, ACM Trans. Graph..

[13]  Robert L. Cook,et al.  Stochastic sampling in computer graphics , 1988, TOGS.

[14]  Tito Homem-de-Mello,et al.  Monte Carlo sampling-based methods for stochastic optimization , 2014 .

[15]  Yoshua Bengio,et al.  Algorithms for Hyper-Parameter Optimization , 2011, NIPS.

[16]  Robert Bridson,et al.  Fast Poisson disk sampling in arbitrary dimensions , 2007, SIGGRAPH '07.

[17]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[18]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[19]  Alexander J. Smola,et al.  Sampling Matters in Deep Embedding Learning , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[20]  D. Sofge THE ROLE OF EXPLORATION IN LEARNING CONTROL , 1992 .

[21]  Oliver Deussen,et al.  Blue noise sampling with controlled aliasing , 2013, TOGS.

[22]  Tao Wang,et al.  Bayesian sparse sampling for on-line reward optimization , 2005, ICML.

[23]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[24]  Ken G. Smith,et al.  The interplay between exploration and exploitation. , 2006 .

[25]  K Varshney Pramod,et al.  Theoretical guarantees for poisson disk sampling using pair correlation function , 2016 .

[26]  Lihong Li,et al.  A Bayesian Sampling Approach to Exploration in Reinforcement Learning , 2009, UAI.

[27]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[28]  Olivier Teytaud,et al.  Critical Hyper-Parameters: No Random, No Cry , 2017, ArXiv.

[29]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[30]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[31]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.