Integrated stress response is critical for gemcitabine resistance in pancreatic ductal adenocarcinoma

[1]  P. Fischer,et al.  Mutations in a translation initiation factor identify the target of a memory-enhancing compound , 2015, Science.

[2]  J. L. Quesne,et al.  Partial restoration of protein synthesis rates by the small molecule ISRIB prevents neurodegeneration without pancreatic toxicity , 2015, Cell Death and Disease.

[3]  J. Kench,et al.  Whole genomes redefine the mutational landscape of pancreatic cancer , 2015, Nature.

[4]  Anna M. McGeachy,et al.  The small molecule ISRIB reverses the effects of eIF2α phosphorylation on translation and stress granule assembly , 2015, eLife.

[5]  T. Gocho,et al.  Mechanisms of Overcoming Intrinsic Resistance to Gemcitabine in Pancreatic Ductal Adenocarcinoma through the Redox Modulation , 2014, Molecular Cancer Therapeutics.

[6]  I. van Seuningen,et al.  Mucins and tumor resistance to chemotherapeutic drugs. , 2014, Biochimica et biophysica acta.

[7]  J. Iovanna,et al.  Genetic inactivation of the pancreatitis-inducible gene Nupr1 impairs PanIN formation by modulating KrasG12D-induced senescence , 2014, Cell Death and Differentiation.

[8]  V. Smith,et al.  Chemotherapy-induced dynamic gene expression changes in vivo are prognostic in ovarian cancer , 2014, British Journal of Cancer.

[9]  Joseph E Chambers,et al.  Endoplasmic reticulum stress in malignancy. , 2014, Cancer cell.

[10]  A. Girotti,et al.  Pro-survival and pro-growth effects of stress-induced nitric oxide in a prostate cancer photodynamic therapy model. , 2014, Cancer letters.

[11]  M. Korc,et al.  DUSP1 Is a Novel Target for Enhancing Pancreatic Cancer Cell Sensitivity to Gemcitabine , 2014, PloS one.

[12]  M. Korc,et al.  Pancreatic cancer-associated retinoblastoma 1 dysfunction enables TGF-β to promote proliferation. , 2014, The Journal of clinical investigation.

[13]  David Goldstein,et al.  Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. , 2013, The New England journal of medicine.

[14]  N. Grishin,et al.  EGFR-Mediated Beclin 1 Phosphorylation in Autophagy Suppression, Tumor Progression, and Tumor Chemoresistance , 2013, Cell.

[15]  J. Iovanna,et al.  Genetic inactivation of Nupr1 acts as a dominant suppressor event in a two-hit model of pancreatic carcinogenesis , 2013, Gut.

[16]  G. Piazza,et al.  An Undesired Effect of Chemotherapy , 2013, The Journal of Biological Chemistry.

[17]  P. Mukherjee,et al.  MUC1 induces drug resistance in pancreatic cancer cells via upregulation of multidrug resistance genes , 2013, Oncogenesis.

[18]  K. Nader,et al.  Pharmacological brake-release of mRNA translation enhances cognitive memory , 2013, eLife.

[19]  R. Kaufman,et al.  ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death , 2013, Nature Cell Biology.

[20]  E. Leteurtre,et al.  The MUC4 mucin mediates gemcitabine resistance of human pancreatic cancer cells via the Concentrative Nucleoside Transporter family , 2013, Oncogene.

[21]  Brent M. Sanders,et al.  Characterization of a novel PERK kinase inhibitor with antitumor and antiangiogenic activity. , 2013, Cancer research.

[22]  Lincoln D. Stein,et al.  Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes , 2012, Nature.

[23]  M. Verheij,et al.  Bcl-2 is a better ABT-737 target than Bcl-xL or Bcl-w and only Noxa overcomes resistance mediated by Mcl-1, Bfl-1, or Bcl-B , 2012, Cell Death and Disease.

[24]  H. Mody,et al.  Overcoming nucleoside analog chemoresistance of pancreatic cancer: a therapeutic challenge. , 2012, Cancer letters.

[25]  M. Korc,et al.  AGR2 is a SMAD4-suppressible gene that modulates MUC1 levels and promotes the initiation and progression of pancreatic intraepithelial neoplasia , 2012, Oncogene.

[26]  R. Schmid,et al.  Nuclear protein 1 promotes pancreatic cancer development and protects cells from stress by inhibiting apoptosis. , 2012, The Journal of clinical investigation.

[27]  Bond-Smith Giles,et al.  Only women with symptoms need to have their breast implants removed, says government , 2012 .

[28]  R. McWilliams,et al.  Aberrant signaling pathways in pancreatic cancer: A two compartment view , 2012, Molecular carcinogenesis.

[29]  A. Maitra,et al.  Gemcitabine plus nab-paclitaxel is an active regimen in patients with advanced pancreatic cancer: a phase I/II trial. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[30]  P. Walter,et al.  The Unfolded Protein Response: From Stress Pathway to Homeostatic Regulation , 2011, Science.

[31]  M. Vogler,et al.  BCL2A1: the underdog in the BCL2 family , 2011, Cell Death and Differentiation.

[32]  V. Carraro,et al.  Amino acid deprivation regulates the stress-inducible gene p8 via the GCN2/ATF4 pathway. , 2011, Biochemical and biophysical research communications.

[33]  Pierre Michel,et al.  FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. , 2011, The New England journal of medicine.

[34]  Marc Liesa,et al.  Pancreatic cancers require autophagy for tumor growth. , 2011, Genes & development.

[35]  M. Marra,et al.  Gemcitabine/cannabinoid combination triggers autophagy in pancreatic cancer cells through a ROS-mediated mechanism , 2011, Cell Death and Disease.

[36]  R. Hruban,et al.  Molecular Characteristics of Pancreatic Ductal Adenocarcinoma , 2011, Pathology research international.

[37]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[38]  R. Wek,et al.  Phosphorylation of eIF2 Facilitates Ribosomal Bypass of an Inhibitory Upstream ORF to Enhance CHOP Translation*♦ , 2011, The Journal of Biological Chemistry.

[39]  Jiangbin Ye,et al.  The GCN2‐ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation , 2010, The EMBO journal.

[40]  W. Huber,et al.  which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. MAnorm: a robust model for quantitative comparison of ChIP-Seq data sets , 2011 .

[41]  R. Parker,et al.  Eukaryotic stress granules: the ins and outs of translation. , 2009, Molecular cell.

[42]  S. Batra,et al.  Pancreatic cancer cells resistance to gemcitabine: the role of MUC4 mucin , 2009, British Journal of Cancer.

[43]  A. Naderi,et al.  BEX2 regulates mitochondrial apoptosis and G1 cell cycle in breast cancer , 2009, International journal of cancer.

[44]  G. Parmigiani,et al.  Core Signaling Pathways in Human Pancreatic Cancers Revealed by Global Genomic Analyses , 2008, Science.

[45]  S. Liau,et al.  HMGA1 Is a Molecular Determinant of Chemoresistance to Gemcitabine in Pancreatic Adenocarcinoma , 2008, Clinical Cancer Research.

[46]  I. Ellis,et al.  BEX2 is overexpressed in a subset of primary breast cancers and mediates nerve growth factor/nuclear factor-kappaB inhibition of apoptosis in breast cancer cell lines. , 2007, Cancer research.

[47]  Gerald C. Chu,et al.  Stromal biology of pancreatic cancer , 2007, Journal of cellular biochemistry.

[48]  E. Meurs,et al.  The dsRNA protein kinase PKR: virus and cell control. , 2007, Biochimie.

[49]  D. V. Von Hoff,et al.  Tumor-stroma interactions in pancreatic ductal adenocarcinoma , 2007, Molecular Cancer Therapeutics.

[50]  D. Ron,et al.  Endoplasmic reticulum stress signaling in disease. , 2006, Physiological reviews.

[51]  T. Anthony,et al.  Coping with stress: eIF2 kinases and translational control. , 2006, Biochemical Society transactions.

[52]  D. Scheuner,et al.  ER stress‐regulated translation increases tolerance to extreme hypoxia and promotes tumor growth , 2005, The EMBO journal.

[53]  A. Hinnebusch Translational regulation of GCN4 and the general amino acid control of yeast. , 2005, Annual review of microbiology.

[54]  R. Wek,et al.  Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[55]  D. Scheuner,et al.  Cytoprotection by pre‐emptive conditional phosphorylation of translation initiation factor 2 , 2004, The EMBO journal.

[56]  T. Fujita,et al.  Identification and Characterization of BCL-3-binding Protein , 2003, Journal of Biological Chemistry.

[57]  R. Paules,et al.  An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. , 2003, Molecular cell.

[58]  Matthew H. Brush,et al.  Growth Arrest and DNA Damage-Inducible Protein GADD34 Targets Protein Phosphatase 1α to the Endoplasmic Reticulum and Promotes Dephosphorylation of the α Subunit of Eukaryotic Translation Initiation Factor 2 , 2003, Molecular and Cellular Biology.

[59]  S. Orkin,et al.  Heme‐regulated eIF2α kinase (HRI) is required for translational regulation and survival of erythroid precursors in iron deficiency , 2001, The EMBO journal.

[60]  M. Schapira,et al.  Regulated translation initiation controls stress-induced gene expression in mammalian cells. , 2000, Molecular cell.

[61]  A. Bradley,et al.  Development of cancer cachexia-like syndrome and adrenal tumors in inhibin-deficient mice. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[62]  T. Lumley,et al.  gplots: Various R Programming Tools for Plotting Data , 2015 .

[63]  A. Jemal,et al.  Cancer statistics, 2014 , 2014, CA: a cancer journal for clinicians.

[64]  D. Tang,et al.  Autophagy in pancreatic cancer pathogenesis and treatment. , 2012, American journal of cancer research.

[65]  Zhiwei Wang,et al.  Pancreatic cancer: understanding and overcoming chemoresistance , 2011, Nature Reviews Gastroenterology &Hepatology.

[66]  Wolfgang Schima,et al.  Pancreatic adenocarcinoma , 2006, European Radiology.

[67]  N. Dubrawsky Cancer statistics , 1989, CA: a cancer journal for clinicians.