AGNES: a new electroanalytical technique for measuring free metal ion concentration

AGNES (absence of gradients and Nernstian equilibrium stripping) is a stripping technique consisting of two conceptual steps: (i) application of a potential program (e.g. a step at a fixed potential) generating a known concentration gain between the outer and inner concentrations of the metal at the mercury electrode surface together with null gradients of the concentration profiles (inside and outside the mercury electrode) and (ii) determination of the concentration of reduced metal inside the amalgam in a stripping step. In the present implementation, the stripping step under diffusion limited conditions leads to a measured current just proportional to the free metal ion concentration. In this paper we present the basic principles of the technique, analytical expressions for a simplified model of its voltammetric implementation and a numerical study for a more refined model together with preliminary experimental results in the Cd(II)/nitrilotriacetic acid system showing how this technique can be used as an alternative to other techniques (such as ion selective electrodes) in order to determine free metal activities or concentrations in the presence of complex mixtures avoiding complications such as electrodic adsorption or complexation kinetics.

[1]  J. Buffle,et al.  Extension of the sensitivity limit of amalgam electrodes, in dilute aquatic media, based on the study of their oxidation process , 1987 .

[2]  D. Turner,et al.  Metal speciation and bioavailability in aquatic systems , 1995 .

[3]  S. Daniele,et al.  Calibrationless determination of cadmium, lead and copper in rain samples by stripping voltammetry at mercury microelectrodes: effect of natural convection on the deposition step , 2002 .

[4]  P. Bühlmann,et al.  Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 2. Ionophores for Potentiometric and Optical Sensors. , 1998, Chemical reviews.

[5]  H. P. Leeuwen,et al.  Elementary features of depletive stripping chronopotentiometry , 2002 .

[6]  J. Pinheiro,et al.  Influence of metal concentration at the electrode surface in differential pulse anodic stripping voltammetry in the presence of humic matter , 1994 .

[7]  Á. Molina,et al.  General analytical solution for a reversible i-t response to a triple potential step at an SMDE in the absence/presence of amalgamation , 1996 .

[8]  Z. Kublik,et al.  Cyclic and stripping voltammetry with graphite based thin mercury film electrodes prepared “in situ” , 1976 .

[9]  H. P. Leeuwen,et al.  Fundamental features of metal ion determination by stripping chronopotentiometry , 2001 .

[10]  F. Mas,et al.  Binding Curve from Normalized Limiting Currents of Labile Heterogeneous Metal-Macromolecular Systems. The Case of Cd/Humic Acid , 2003 .

[11]  J. Buffle,et al.  Application of amalgam electrodes in studies of heavy metals under natural water conditions , 1987 .

[12]  F. Martínez-Ortíz,et al.  Cyclic voltammetry at constant sphericity , 1998 .

[13]  V. Solis,et al.  Square wave stripping voltammetry of Cd–oxine complexes; surface redox reactions , 1999 .

[14]  E. Neyman,et al.  Electroanalytical stripping methods , 1993 .

[15]  F.J.C. Bijl,et al.  A mechanistic study of Cd(II) reduction at the mercury electrode from aqueous 0.5 M Na2SO4 base electrolyte by the combination of dc and ac voltammetry with the dropping mercury microelectrode technique , 1997 .

[16]  J. Buffle,et al.  A versatile macro- to micro-size stationary mercury drop electrode , 1995 .

[17]  J. Allison,et al.  MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems: Version 3. 0 user's manual , 1991 .

[18]  Gregory T. A. Kovacs,et al.  Iridium-Based Ultramicroelectrode Array Fabricated by Microlithography , 1994 .

[19]  A. Yuchi,et al.  The performance of a cadmium ion-selective electrode in metal buffer solutions and the determination of the stability constants of cadmium complexes , 1983 .

[20]  J. Pinheiro,et al.  On lability of chemically heterogeneous systems : complexes between trace metals and humic matter , 1999 .

[21]  Ernö Pretsch,et al.  Carrier-Based Ion-Selective Electrodes and Bulk Optodes. 1. General Characteristics. , 1997, Chemical reviews.

[22]  K. B. Oldham,et al.  Linear-Scan Anodic Stripping Voltammetry with Thin-Film Electrodes: Theory of the Stripping Stage and Experimental Tests , 1997 .

[23]  F. Morel,et al.  Investigations of iron coordination and redox reactions in seawater using 59Fe radiometry and ion-pair solvent extraction of amphiphilic iron complexes , 1992 .

[24]  J. Buffle,et al.  An iridium based mercury film electrode: Part II. Comparison of mercury-film electrode behaviors: theory versus reality , 1988 .

[25]  W. D. Vries,et al.  Theory of anodic stripping voltammetry with a plane, thin mercury-film electrode , 1964 .

[26]  F. Mas,et al.  Complexation isotherms in metal speciation studies at trace concentration levels. Voltammetric techniques in environmental samples , 2002 .

[27]  R. Tauler,et al.  Multivariate curve resolution analysis of voltammetric data obtained at different time windows: study of the system Cd2+–nitrilotriacetic acid , 1998 .

[28]  K. B. Oldham,et al.  Electroactive concentrations at the surface of a spherical electrode , 1985 .

[29]  J. Buffle,et al.  Complexation reactions in aquatic systems : an analytical approach / J. Buffle, translators S.P. Kounaves, A. Kounaves and R.S. Altman , 1990 .

[30]  H. P. Leeuwen,et al.  Stripping chronopotentiometry at scanned deposition potential (SSCP).: Part 1. Fundamental features , 2003 .

[31]  G. Ginzburg A polarographic study of Cd(II)-NTA complexes in alkaline solution , 1978 .

[32]  M. Borkovec,et al.  Affinity distributions and acid-base properties of homogeneous and heterogeneous sorbents: exact results versus experimental data inversion , 1996 .

[33]  J. Buffle,et al.  Chemical and Biological Regulation of Aquatic Systems , 1994 .

[34]  M. Esteban,et al.  Amalgamation effects in reverse pulse polarography at spherical electrodes. Influence on speciation measurements , 1998 .

[35]  J. Koryta Kinetik der elektrodenvorgänge von komplexen in der polarographie III. Durchtritts- und dissoziationsreaktion des komplexes , 1959 .

[36]  K. B. Oldham,et al.  Amalgam concentration at the surface of a spherical mercury electrode following a potential step , 1987 .

[37]  M. Esteban,et al.  Three‐Dimensional Voltammetric Study on the Applicability of Leden Functions to the Analysis of Nonlabile Complexes: The Cd(II)‐NTA System , 1999 .

[38]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .