On the Robustness of Nominally Well-Posed Event-Triggered Controllers

In this letter, we show that: 1) if the Krasovskii regularization of a hybrid system <inline-formula> <tex-math notation="LaTeX">$\mathcal {H}$ </tex-math></inline-formula> has complete and discrete solutions, then <inline-formula> <tex-math notation="LaTeX">$\mathcal {H}$ </tex-math></inline-formula> has solutions with arbitrarily small separation between jumps under the influence of admissible state perturbations; 2) if <inline-formula> <tex-math notation="LaTeX">$\mathcal {H}$ </tex-math></inline-formula> is nominally well-posed and does not have complete discrete solutions, then it does not have solutions with vanishing time between jumps (such as Zeno solutions); 3) if, in addition, there exists a compact set <inline-formula> <tex-math notation="LaTeX">$\mathcal {A}$ </tex-math></inline-formula> such that all maximal solutions to <inline-formula> <tex-math notation="LaTeX">$\mathcal {H}$ </tex-math></inline-formula> from <inline-formula> <tex-math notation="LaTeX">$\mathcal {A}$ </tex-math></inline-formula> are complete, discrete and remain in <inline-formula> <tex-math notation="LaTeX">$\mathcal {A}$ </tex-math></inline-formula>, then all solutions converging to <inline-formula> <tex-math notation="LaTeX">$\mathcal {A}$ </tex-math></inline-formula> have vanishing time between jumps. The results in this letter demonstrate that a good practice to avoid solutions with arbitrarily fast sampling in Event-Triggered Control (ETC) is to ensure that the closed-loop system is nominally well-posed and that it does not have complete discrete solutions.

[1]  Karl Henrik Johansson,et al.  Distributed Event-Triggered Control for Multi-Agent Systems , 2012, IEEE Transactions on Automatic Control.

[2]  Zhong-Ping Jiang,et al.  A Small-Gain Approach to Robust Event-Triggered Control of Nonlinear Systems , 2015, IEEE Transactions on Automatic Control.

[3]  Ricardo G. Sanfelice,et al.  Hybrid Dynamical Systems: Modeling, Stability, and Robustness , 2012 .

[4]  Dragan Nesic,et al.  Robust event-triggered output feedback controllers for nonlinear systems , 2017, Autom..

[5]  Manuel Mazo,et al.  On event-triggered and self-triggered control over sensor/actuator networks , 2008, 2008 47th IEEE Conference on Decision and Control.

[6]  W. P. M. H. Heemels,et al.  Output-Based and Decentralized Dynamic Event-Triggered Control With Guaranteed $\mathcal{L}_{p}$- Gain Performance and Zeno-Freeness , 2017, IEEE Transactions on Automatic Control.

[7]  W. P. M. H. Heemels,et al.  Event-Separation Properties of Event-Triggered Control Systems , 2014, IEEE Transactions on Automatic Control.

[8]  Hisaya Fujioka Stability analysis of systems with aperiodic sample-and-hold devices , 2007 .

[9]  Nicolas Marchand,et al.  A General Formula for Event-Based Stabilization of Nonlinear Systems , 2013, IEEE Transactions on Automatic Control.

[10]  Ricardo G. Sanfelice,et al.  Invariance Principles for Hybrid Systems With Connections to Detectability and Asymptotic Stability , 2007, IEEE Transactions on Automatic Control.

[11]  F. Allgower,et al.  An impulsive observer that estimates the exact state of a linear continuous-time system in predetermined finite time , 2007, 2007 Mediterranean Conference on Control & Automation.

[12]  Dragan Nesic,et al.  Stabilization of Nonlinear Systems Using Event-Triggered Output Feedback Controllers , 2014, IEEE Transactions on Automatic Control.

[13]  Zhong-Ping Jiang,et al.  Event-based control of nonlinear systems with partial state and output feedback , 2015, Autom..

[14]  Gang Feng,et al.  Robust cooperative output regulation of multi-agent systems via adaptive event-triggered control , 2019, Autom..

[15]  Pedro Casau,et al.  Analysis and design of event‐triggered control algorithms using hybrid systems tools , 2020 .

[16]  Paulo Tabuada,et al.  Event-Triggered Real-Time Scheduling of Stabilizing Control Tasks , 2007, IEEE Transactions on Automatic Control.

[17]  Pedro Casau,et al.  Global Trajectory Tracking for a Quadrotor through Event-Triggered Control: Synthesis, Simulations, and Experiments* , 2020, 2020 American Control Conference (ACC).

[18]  Paulo Tabuada,et al.  A Framework for the Event-Triggered Stabilization of Nonlinear Systems , 2015, IEEE Transactions on Automatic Control.

[19]  Dragan Nesic,et al.  Explicit Computation of the Sampling Period in Emulation of Controllers for Nonlinear Sampled-Data Systems , 2009, IEEE Transactions on Automatic Control.