Multiscale methods with compactly supported radial basis functions for Galerkin approximation of elliptic PDEs

The aim of this work is to consider multiscale algorithms for solving PDEs with Galerkin methods on bounded domains. We provide results on convergence and condition numbers. We show how to handle PDEs with Dirichlet boundary conditions. We also investigate convergence in terms of the mesh norms and the angles between subspaces to better understand the differences between the algorithms and the observed results. We also consider the issue of the supports of the RBFs overlapping the boundary in our stability analysis, which has not been considered in the literature, to the best of our knowledge.

[1]  Richard K. Beatson,et al.  Fast Solution of the Radial Basis Function Interpolation Equations: Domain Decomposition Methods , 2000, SIAM J. Sci. Comput..

[2]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[3]  Holger Wendland,et al.  Error Estimates for Interpolation by Compactly Supported Radial Basis Functions of Minimal Degree , 1998 .

[4]  Michael Griebel,et al.  A Particle-Partition of Unity Method Part V: Boundary Conditions , 2003 .

[5]  Holger Wendland,et al.  Meshless Galerkin methods using radial basis functions , 1999, Math. Comput..

[6]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[7]  Holger Wendland,et al.  Multiscale Analysis in Sobolev Spaces on the Sphere , 2010, SIAM J. Numer. Anal..

[8]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[9]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[10]  Holger Wendland,et al.  Meshless Collocation: Error Estimates with Application to Dynamical Systems , 2007, SIAM J. Numer. Anal..

[11]  D. Longsine,et al.  Simultaneous rayleigh-quotient minimization methods for Ax=λBx , 1980 .

[12]  Stephen F. McCormick,et al.  Multilevel projection methods for partial differential equations , 1992, CBMS-NSF regional conference series in applied mathematics.

[13]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[14]  Tony Shardlow,et al.  Frontiers in numerical analysis , 2003 .

[15]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[16]  Holger Wendland,et al.  Multiscale analysis in Sobolev spaces on bounded domains , 2010, Numerische Mathematik.

[17]  Michael Griebel,et al.  A Particle-Partition of Unity Method Part VII: Adaptivity , 2007 .

[18]  G. Strang Piecewise polynomials and the finite element method , 1973 .

[19]  M. Floater,et al.  Multistep scattered data interpolation using compactly supported radial basis functions , 1996 .

[20]  Ian H. Sloan,et al.  Wendland functions with increasing smoothness converge to a Gaussian , 2012, Adv. Comput. Math..

[21]  R. Schaback,et al.  Interpolation by basis functions of different scales and shapes , 2004 .

[22]  Gregory E. Fasshauer,et al.  Solving differential equations with radial basis functions: multilevel methods and smoothing , 1999, Adv. Comput. Math..

[23]  E Weinan,et al.  Heterogeneous multiscale methods: A review , 2007 .

[24]  Kennan T. Smith,et al.  Practical and mathematical aspects of the problem of reconstructing objects from radiographs , 1977 .

[25]  Do Y. Kwak,et al.  Convergence estimates for multigrid algorithms , 1997 .

[26]  Frank Deutsch,et al.  The Method of Alternating Orthogonal Projections , 1992 .

[27]  Vladimir Maz’ya,et al.  Sobolev Spaces: with Applications to Elliptic Partial Differential Equations , 2011 .