Sublinear- Time Algorithms for Compressive Phase Retrieval

In the compressive phase retrieval problem, the goal is to reconstruct a sparse or approximately k-sparse vector $x\in \mathbb{R}^{n}$ given access to $y=\vert \Phi x\vert$, where $\vert v\vert$ denotes the vector obtained from taking the absolute value of $v\in \mathbb{R}^{n}$ coordinate-wise. In this paper we present sublinear-time algorithms for different variants of the compressive phase retrieval problem which are akin to the variants of the classical compressive sensing problem considered in theoretical computer science. Our algorithms use pure combinatorial techniques and achieve almost optimal number of measurements.

[1]  Kannan Ramchandran,et al.  PhaseCode: Fast and Efficient Compressive Phase Retrieval Based on Sparse-Graph Codes , 2017, IEEE Transactions on Information Theory.

[2]  Biing-Hwang Juang,et al.  Fundamentals of speech recognition , 1993, Prentice Hall signal processing series.

[3]  Ely Porat,et al.  For-All Sparse Recovery in Near-Optimal Time , 2014, ACM Trans. Algorithms.

[4]  J. Kingman A FIRST COURSE IN STOCHASTIC PROCESSES , 1967 .

[5]  Piotr Indyk,et al.  Nearly optimal sparse fourier transform , 2012, STOC '12.

[6]  Xiaodong Li,et al.  Phase Retrieval from Coded Diffraction Patterns , 2013, 1310.3240.

[7]  David P. Woodruff,et al.  Improved Algorithms for Adaptive Compressed Sensing , 2018, ICALP.

[8]  Zhang Fe Phase retrieval from coded diffraction patterns , 2015 .

[9]  Alan M. Frieze,et al.  Random graphs , 2006, SODA '06.

[10]  Rory Biggs,et al.  Publicationes Mathematicae Debrecen , 2016 .

[11]  Bing Gao,et al.  Stable Signal Recovery from Phaseless Measurements , 2015, ArXiv.

[12]  John Wright,et al.  A Geometric Analysis of Phase Retrieval , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[13]  David P. Woodruff,et al.  Lower bounds for sparse recovery , 2010, SODA '10.

[14]  Piotr Indyk,et al.  (Nearly) Sample-Optimal Sparse Fourier Transform , 2014, SODA.

[15]  C. Bachoc,et al.  Applied and Computational Harmonic Analysis Tight P-fusion Frames , 2022 .

[16]  Charalampos E. Tsourakakis,et al.  Predicting Positive and Negative Links with Noisy Queries: Theory & Practice , 2017, ArXiv.

[17]  David P. Woodruff,et al.  On the Power of Adaptivity in Sparse Recovery , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[18]  Samuel Karlin,et al.  A First Course on Stochastic Processes , 1968 .

[19]  Emmanuel J. Candès,et al.  PhaseLift: Exact and Stable Signal Recovery from Magnitude Measurements via Convex Programming , 2011, ArXiv.

[20]  Mikhail Kapralov,et al.  Sample Efficient Estimation and Recovery in Sparse FFT via Isolation on Average , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[21]  Vasileios Nakos,et al.  Sublinear-Time Algorithms for Compressive Phase Retrieval , 2020, IEEE Transactions on Information Theory.

[22]  Mayank Bakshi,et al.  SUPER: Sparse signals with unknown phases efficiently recovered , 2014, 2014 IEEE International Symposium on Information Theory.

[23]  David P. Woodruff,et al.  (1 + eps)-Approximate Sparse Recovery , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[24]  Daniel Boley,et al.  A fast method to diagonalize a Hankel matrix , 1998 .

[25]  Atri Rudra,et al.  Efficiently Decodable Error-Correcting List Disjunct Matrices and Applications - (Extended Abstract) , 2011, ICALP.

[26]  Tetsunao Matsuta,et al.  国際会議開催報告:2013 IEEE International Symposium on Information Theory , 2013 .

[27]  Atri Rudra,et al.  ℓ2/ℓ2-Foreach Sparse Recovery with Low Risk , 2013, ICALP.

[28]  Yonina C. Eldar,et al.  STFT Phase Retrieval: Uniqueness Guarantees and Recovery Algorithms , 2015, IEEE Journal of Selected Topics in Signal Processing.

[29]  Ely Porat,et al.  Sublinear time, measurement-optimal, sparse recovery for all , 2012, SODA.

[30]  Mahdi Soltanolkotabi,et al.  Structured Signal Recovery From Quadratic Measurements: Breaking Sample Complexity Barriers via Nonconvex Optimization , 2017, IEEE Transactions on Information Theory.

[31]  Å. Björck,et al.  Solution of Vandermonde Systems of Equations , 1970 .

[32]  Yang Wang,et al.  Robust sparse phase retrieval made easy , 2014, 1410.5295.

[33]  Tom Goldstein,et al.  PhaseMax: Convex Phase Retrieval via Basis Pursuit , 2016, IEEE Transactions on Information Theory.

[34]  David P. Woodruff,et al.  On Low-Risk Heavy Hitters and Sparse Recovery Schemes , 2017, APPROX-RANDOM.

[35]  Yonina C. Eldar,et al.  Phase Retrieval with Application to Optical Imaging: A contemporary overview , 2015, IEEE Signal Processing Magazine.

[36]  Alessandro Panconesi,et al.  Concentration of Measure for the Analysis of Randomized Algorithms , 2009 .

[37]  Moses Charikar,et al.  Finding frequent items in data streams , 2004, Theor. Comput. Sci..

[38]  David P. Woodruff,et al.  ( 1 + )-approximate Sparse Recovery , 2011 .

[39]  Vasileios Nakos,et al.  Stronger L2/L2 compressed sensing; without iterating , 2019, STOC.

[40]  Yang Wang,et al.  Fast Phase Retrieval from Local Correlation Measurements , 2015, SIAM J. Imaging Sci..

[41]  Mikkel Thorup,et al.  Heavy Hitters via Cluster-Preserving Clustering , 2016, 2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS).

[42]  Mikhail Kapralov,et al.  Sparse fourier transform in any constant dimension with nearly-optimal sample complexity in sublinear time , 2016, STOC.

[43]  Xiaodong Li,et al.  Phase Retrieval via Wirtinger Flow: Theory and Algorithms , 2014, IEEE Transactions on Information Theory.

[44]  Vasileios Nakos,et al.  Almost optimal phaseless compressed sensing with sublinear decoding time , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[45]  Babak Hassibi,et al.  Sparse phase retrieval: Convex algorithms and limitations , 2013, 2013 IEEE International Symposium on Information Theory.

[46]  Yonina C. Eldar,et al.  Phase Retrieval: An Overview of Recent Developments , 2015, ArXiv.

[47]  Rayan Saab,et al.  MEASUREMENTS: IMPROVED ROBUSTNESS VIA EIGENVECTOR-BASED ANGULAR SYNCHRONIZATION , 2022 .