A soluble truncated tau species related to cognitive dysfunction is elevated in the brain of cognitively impaired human individuals

[1]  K. Ashe,et al.  A soluble tau fragment generated by caspase-2 is associated with dementia in Lewy body disease , 2019, Acta Neuropathologica Communications.

[2]  K. Ashe,et al.  A soluble truncated tau species related to cognitive dysfunction and caspase-2 is elevated in the brain of Huntington’s disease patients , 2019, Acta Neuropathologica Communications.

[3]  C. DeCarli,et al.  Plasma total‐tau as a biomarker of stroke risk in the community , 2019, Annals of neurology.

[4]  K. Blennow,et al.  Blood-based Biomarkers for Alzheimer ’ s Disease and Related Dementias Plasma tau complements CSF tau and P-tau in the diagnosis of Alzheimer ’ s disease , 2019 .

[5]  K. Zahs,et al.  Human cerebrospinal fluid 6E10-immunoreactive protein species contain amyloid precursor protein fragments , 2019, PloS one.

[6]  P. Sætrom,et al.  Unique-region phosphorylation targets LynA for rapid degradation, tuning its expression and signaling in myeloid cells , 2019, bioRxiv.

[7]  Christopher G Schwarz,et al.  Longitudinal tau PET in ageing and Alzheimer’s disease , 2018, Brain : a journal of neurology.

[8]  E. Mandelkow,et al.  Multivalent cross-linking of actin filaments and microtubules through the microtubule-associated protein Tau , 2017, Nature Communications.

[9]  F. Jessen,et al.  Tau plasma levels in subjective cognitive decline: Results from the DELCODE study , 2017, Alzheimer's & Dementia.

[10]  K. Zahs,et al.  Caspase-2 cleavage of tau reversibly impairs memory , 2016, Nature Medicine.

[11]  T. Arendt,et al.  Tau and tauopathies , 2016, Brain Research Bulletin.

[12]  T. Griffin,et al.  Slx5/Slx8 Promotes Replication Stress Tolerance by Facilitating Mitotic Progression. , 2016, Cell reports.

[13]  E. Mandelkow,et al.  Tau in physiology and pathology , 2015, Nature Reviews Neuroscience.

[14]  Mariusz Jaremko,et al.  Folding of the Tau Protein on Microtubules. , 2015, Angewandte Chemie.

[15]  P. Rossini,et al.  Longitudinal reproducibility of default-mode network connectivity in healthy elderly participants: A multicentric resting-state fMRI study , 2015, Alzheimer's & Dementia.

[16]  William T. Hu,et al.  Cleavage of tau by asparagine endopeptidase mediates the neurofibrillary pathology in Alzheimer’s disease , 2014, Nature Medicine.

[17]  Brian J. Bacskai,et al.  Neurofibrillary tangle-bearing neurons are functionally integrated in cortical circuits in vivo , 2013, Proceedings of the National Academy of Sciences.

[18]  D. Bennett,et al.  Cerebrospinal fluid tau cleaved by caspase-6 reflects brain levels and cognition in aging and Alzheimer disease. , 2013, Journal of neuropathology and experimental neurology.

[19]  D. Bennett,et al.  Caspase-6 activity predicts lower episodic memory ability in aged individuals , 2013, Neurobiology of Aging.

[20]  M. Karsdal,et al.  An Enzyme-Generated Fragment of Tau Measured in Serum Shows an Inverse Correlation to Cognitive Function , 2013, PloS one.

[21]  J. Schneider,et al.  Overview and findings from the rush Memory and Aging Project. , 2012, Current Alzheimer research.

[22]  R. D'Hooge,et al.  Cognitive defects are reversible in inducible mice expressing pro-aggregant full-length human Tau , 2012, Acta Neuropathologica.

[23]  J. Schneider,et al.  National Institute on Aging–Alzheimer's Association guidelines for the neuropathologic assessment of Alzheimer's disease , 2012, Alzheimer's & Dementia.

[24]  F. Terro,et al.  Post-translational modifications of tau protein: Implications for Alzheimer's disease , 2011, Neurochemistry International.

[25]  Rudi D'Hooge,et al.  Tau-Induced Defects in Synaptic Plasticity, Learning, and Memory Are Reversible in Transgenic Mice after Switching Off the Toxic Tau Mutant , 2011, The Journal of Neuroscience.

[26]  K. Zahs,et al.  Grape seed polyphenolic extract specifically decreases Aβ∗56 in the brains of Tg2576 mice , 2010, Alzheimer's & Dementia.

[27]  Brendan MacLean,et al.  Bioinformatics Applications Note Gene Expression Skyline: an Open Source Document Editor for Creating and Analyzing Targeted Proteomics Experiments , 2022 .

[28]  Shaomin Li,et al.  Amyloid-β protein dimers isolated directly from Alzheimer's brains impair synaptic plasticity and memory , 2008, Nature Medicine.

[29]  F. García-Sierra,et al.  Accumulation of Aspartic Acid421- and Glutamic Acid391-Cleaved Tau in Neurofibrillary Tangles Correlates With Progression in Alzheimer Disease , 2008, Journal of neuropathology and experimental neurology.

[30]  D. Bennett,et al.  Activation of caspase-6 in aging and mild cognitive impairment. , 2007, The American journal of pathology.

[31]  Bin Zhang,et al.  Synapse Loss and Microglial Activation Precede Tangles in a P301S Tauopathy Mouse Model , 2007, Neuron.

[32]  K. Ashe,et al.  Age-Dependent Neurofibrillary Tangle Formation, Neuron Loss, and Memory Impairment in a Mouse Model of Human Tauopathy (P301L) , 2005, The Journal of Neuroscience.

[33]  B. Hyman,et al.  Tau Suppression in a Neurodegenerative Mouse Model Improves Memory Function , 2005, Science.

[34]  S. Albrecht,et al.  Active caspase-6 and caspase-6-cleaved tau in neuropil threads, neuritic plaques, and neurofibrillary tangles of Alzheimer's disease. , 2004, The American journal of pathology.

[35]  C. Cotman,et al.  Caspase-cleavage of tau is an early event in Alzheimer disease tangle pathology. , 2004, The Journal of clinical investigation.

[36]  R. Berry,et al.  Caspase cleavage of tau: Linking amyloid and neurofibrillary tangles in Alzheimer's disease , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[37]  J. Gomori,et al.  Frontotemporal dementia and parkinsonism with the P301S tau gene mutation in a Jewish family , 2003, Journal of Neurology.

[38]  J. Morrison,et al.  Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease , 2003, Neurology.

[39]  M. Mesulam,et al.  Neurofibrillary tangles, amyloid, and memory in aging and mild cognitive impairment. , 2003, Archives of neurology.

[40]  M. Mann,et al.  Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. , 2003, Analytical chemistry.

[41]  C. Harrington,et al.  Accumulation of C-terminally truncated tau protein associated with vulnerability of the perforant pathway in early stages of neurofibrillary pathology in Alzheimer's disease , 2001, Journal of Chemical Neuroanatomy.

[42]  A. Convit,et al.  Atrophy of the medial occipitotemporal, inferior, and middle temporal gyri in non-demented elderly predict decline to Alzheimer’s disease☆ , 2000, Neurobiology of Aging.

[43]  S. Reske,et al.  FTDP‐17: An early‐onset phenotype with parkinsonism and epileptic seizures caused by a novel mutation , 1999, Annals of neurology.

[44]  M G Spillantini,et al.  Frontotemporal dementia and corticobasal degeneration in a family with a P301S mutation in tau. , 1999, Journal of neuropathology and experimental neurology.

[45]  S. Shimohama,et al.  Changes in caspase expression in Alzheimer's disease: comparison with development and aging. , 1999, Biochemical and biophysical research communications.

[46]  Y. Agid,et al.  Segregation of a missense mutation in the microtubule-associated protein tau gene with familial frontotemporal dementia and parkinsonism. , 1998, Human molecular genetics.

[47]  Ronald C. Petersen,et al.  Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17 , 1998, Nature.

[48]  Richard Hollister,et al.  Neuronal loss correlates with but exceeds neurofibrillary tangles in Alzheimer's disease , 1997, Annals of neurology.

[49]  E. Mandelkow,et al.  Domains of tau protein and interactions with microtubules. , 1994, Biochemistry.

[50]  M. Roth,et al.  Biochemical and anatomical redistribution of tau protein in Alzheimer's disease. , 1993, The American journal of pathology.

[51]  J. Kabat,et al.  Molecular characterization of the minimal protease resistant tau unit of the Alzheimer's disease paired helical filament. , 1993, The EMBO journal.

[52]  K. Kosik,et al.  Structure and novel exons of the human tau gene. , 1992, Biochemistry.

[53]  A. Hyman,et al.  Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. , 1992, Molecular biology of the cell.

[54]  Bradley T. Hyman,et al.  Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease , 1992, Neurology.

[55]  S. M. Sumi,et al.  The Consortium to Establish a Registry for Alzheimer's Disease (CERAD) , 1991, Neurology.

[56]  R. A. Crowther,et al.  Multiple isoforms of human microtubule-associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer's disease , 1989, Neuron.

[57]  Jane Roberts,et al.  A Practical Approach , 1963 .

[58]  Charles Duyckaerts,et al.  National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach , 2011, Acta Neuropathologica.

[59]  S. Lesné,et al.  Detecting aβ*56 oligomers in brain tissues. , 2011, Methods in molecular biology.

[60]  K. Zahs,et al.  Grape seed polyphenolic extract specifically decreases aβ*56 in the brains of Tg2576 mice. , 2011, Journal of Alzheimer's disease : JAD.

[61]  H. Braak,et al.  Neuropathological stageing of Alzheimer-related changes , 2004, Acta Neuropathologica.

[62]  Daniel W. McKeel,et al.  Clinicopathologic studies in cognitively healthy aging and Alzheimer disease , 1998 .

[63]  L Carlin,et al.  Neocortical neurofibrillary tangles correlate with dementia severity in Alzheimer's disease. , 1995, Archives of neurology.

[64]  Eric Lichtfouse,et al.  Rapid Communications in Mass Spectrometry , 2022 .