How accurate channel prediction needs to be for transmit-beamforming with adaptive modulation over Rayleigh MIMO channels?

Adaptive modulation improves the system throughput considerably by matching transmitter parameters to time-varying wireless fading channels. Crucial to adaptive modulation is the quality of channel state information at the transmitter. In this paper, we first present a channel predictor based on pilot symbol assisted modulation for multiple-input multiple-output Rayleigh fading channels. We then analyze the impact of the channel prediction error on the bit error rate performance of a transmit-beamformer with adaptive modulation that treats the predicted channels as perfect. Our numerical results reveal the critical value of the normalized prediction error, below which the predicted channels can be treated as perfect by the adaptive modulator; otherwise, explicit consideration of the channel imperfection must be accounted for at the transmitter.

[1]  Mohamed-Slim Alouini,et al.  Adaptive Modulation over Nakagami Fading Channels , 2000, Wirel. Pers. Commun..

[2]  James K. Cavers,et al.  Single-user and multiuser adaptive maximal ratio transmission for Rayleigh channels , 2000, IEEE Trans. Veh. Technol..

[3]  A. Goldsmith,et al.  On optimality of beamforming for multiple antenna systems with imperfect feedback , 2001, Proceedings. 2001 IEEE International Symposium on Information Theory (IEEE Cat. No.01CH37252).

[4]  Dongweon Yoon,et al.  General bit error probability of rectangular quadrature amplitude modulation , 2002 .

[5]  C. Khatri Distribution of the Largest or the Smallest Characteristic Root Under Null Hypothesis Concerning Complex Multivariate Normal Populations , 1964 .

[6]  Giorgio Taricco,et al.  Exact pairwise error probability of space-time codes , 2002, IEEE Trans. Inf. Theory.

[7]  Alexandra Duel-Hallen,et al.  Combined adaptive modulation and transmitter diversity using long range prediction for flat fading mobile radio channels , 2001, GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.01CH37270).

[8]  Kjell Jørgen Hole,et al.  Impact of channel prediction on adaptive coded modulation performance in Rayleigh fading , 2004, IEEE Transactions on Vehicular Technology.

[9]  Siavash M. Alamouti,et al.  A simple transmit diversity technique for wireless communications , 1998, IEEE J. Sel. Areas Commun..

[10]  Georgios B. Giannakis,et al.  Adaptive Modulation for multiantenna transmissions with channel mean feedback , 2004, IEEE Transactions on Wireless Communications.

[11]  Mohamed-Slim Alouini,et al.  Effect of channel estimation error on M-QAM BER performance in Rayleigh fading , 1999, IEEE Trans. Commun..

[12]  Georgios B. Giannakis,et al.  Optimal transmitter eigen-beamforming and space time block coding based on channel mean , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[13]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[14]  Richard D. Wesel,et al.  Adaptive bit-interleaved coded modulation , 2001, IEEE Trans. Commun..

[15]  Upamanyu Madhow,et al.  Space-Time transmit precoding with imperfect feedback , 2001, IEEE Trans. Inf. Theory.

[16]  Andrea J. Goldsmith,et al.  Adaptive coded modulation for fading channels , 1997, Proceedings of ICC'97 - International Conference on Communications.

[17]  W. T. Webb,et al.  Variable rate QAM for mobile radio , 1995, IEEE Trans. Commun..

[18]  Gregory W. Wornell,et al.  Efficient use of side information in multiple-antenna data transmission over fading channels , 1998, IEEE J. Sel. Areas Commun..

[19]  Andrea J. Goldsmith,et al.  Degrees of freedom in adaptive modulation: a unified view , 2001, IEEE Trans. Commun..

[20]  Giorgio Taricco,et al.  Exact pairwise error probability of space-time codes , 2002, 2002 IEEE International Conference on Communications. Conference Proceedings. ICC 2002 (Cat. No.02CH37333).

[21]  Georgios B. Giannakis,et al.  Adaptive modulation for multi-antenna transmissions with channel mean feedback , 2003, IEEE International Conference on Communications, 2003. ICC '03..

[22]  Norihiko Morinaga,et al.  Symbol rate and modulation level-controlled adaptive modulation/TDMA/TDD system for high-bit-rate wireless data transmission , 1998 .

[23]  J. Cavers An analysis of pilot symbol assisted modulation for Rayleigh fading channels (mobile radio) , 1991 .

[24]  Vincent K. N. Lau,et al.  Variable-rate adaptive trellis coded QAM for flat-fading channels , 2001, IEEE Trans. Commun..

[25]  Muriel Médard,et al.  The effect upon channel capacity in wireless communications of perfect and imperfect knowledge of the channel , 2000, IEEE Trans. Inf. Theory.

[26]  Shlomo Shamai,et al.  Fading channels: How perfect need "Perfect side information" be? , 2002, IEEE Trans. Inf. Theory.

[27]  Andrea J. Goldsmith,et al.  Variable-rate variable-power MQAM for fading channels , 1997, IEEE Trans. Commun..

[28]  Hans D. Hallen,et al.  Long-range prediction of fading signals , 2000, IEEE Signal Process. Mag..

[29]  Dennis Goeckel,et al.  Adaptive coding for time-varying channels using outdated fading estimates , 1999, IEEE Trans. Commun..

[30]  A. James Distributions of Matrix Variates and Latent Roots Derived from Normal Samples , 1964 .

[31]  Kjell Jørgen Hole,et al.  Adaptive multidimensional coded modulation over flat fading channels , 2000, IEEE Journal on Selected Areas in Communications.

[32]  Mohamed-Slim Alouini,et al.  Largest eigenvalue of complex Wishart matrices and performance analysis of MIMO MRC systems , 2003, IEEE J. Sel. Areas Commun..