Asteroids in the Thermal Infrared

The importance of the thermal-infrared spectra region for investigations of asteroids lies traditionally in the dependence of the thermal emission of an asteroid on its visual albedo and size. Knowledge of albedos and sizes is crucial in many areas of asteroid research, such as mineralogy and taxonomy, the sice-frequency distribution of families and populations of asteroids (e.g., near-Earth asteroids), and the relationship between asteroids in the outer solar system and comets. However, the rapid increase in the availability of computing power over the past decade has cleared the way for development of sophisticated thermophysical models of asteroids with interesting new areas of application. Recent progress in the thermal modeling of asteroids and observational work in the thermal infrared are described. The use of thermal models for the physical characterization of asteroids and other applications is discussed.

[1]  M. Barucci,et al.  Observations from Orbiting Platforms , 2002 .

[2]  M. Kaasalainen,et al.  Asteroid Models from Disk-Integrated Data , 2002 .

[3]  D. Tholen,et al.  Visible to Thermal-Infrared Spectrophotometry of a Possible Inactive Cometary Nucleus , 2001 .

[4]  A. Evans,et al.  The size and albedo of the Kuiper-belt object (20000) Varuna , 2001, Nature.

[5]  D. Jewitt,et al.  Low Albedos Among Extinct Comet Candidates , 2001, astro-ph/0104478.

[6]  F. Bertoldi,et al.  Size determination of the Centaur Chariklo from millimeter-wavelength bolometer observations , 2000, astro-ph/0012370.

[7]  Martin A. Slade,et al.  Slowly Rotating Asteroid 1999 GU3 , 2000 .

[8]  Andrea Milani,et al.  Yarkovsky Effect on Small Near-Earth Asteroids: Mathematical Formulation and Examples , 2000 .

[9]  M. N. Meshkov,et al.  Radar observations and physical model of asteroid 6489 Golevka , 2000 .

[10]  I. Shapiro,et al.  Radar Observations of Asteroid 2100 Ra-Shalom , 2000 .

[11]  Li,et al.  NEAR at eros: imaging and spectral results , 2000, Science.

[12]  Athena Coustenis,et al.  Pluto's Non-isothermal Surface , 2000 .

[13]  N. Thomas,et al.  Observations of the Trans-Neptunian Objects 1993 SC and 1996 TL66 with the Infrared Space Observatory , 2000 .

[14]  N. Thomas,et al.  Observations of the trans-neptunian objects 1993 SC und 1996 TL66 with ISO , 2000 .

[15]  A. Harris,et al.  Physical Characteristics of Near-Earth Asteroids from Thermal Infrared Spectrophotometry☆ , 1999 .

[16]  A. Erikson,et al.  ISOPHOT Polarization Measurements of the Asteroids (6) Hebe and (9) Metis at 25 μm , 1999 .

[17]  S. Ostro,et al.  Recent radar observations of asteroid 1566 Icarus , 1999 .

[18]  S. Ostro,et al.  Radar Observations of Asteroid 2063 Bacchus , 1999 .

[19]  Fred C. Witteborn,et al.  Mercury: Thermal Modeling and Mid-infrared (5–12 μm) Observations☆ , 1998 .

[20]  A. Harris,et al.  Thermal Infrared Spectrophotometry of the Near-Earth Asteroids 2100 Ra-Shalom and 1991 EE , 1998 .

[21]  T. G. Muller,et al.  Asteroids as far-infrared photometric standards for ISOPHOT , 1998 .

[22]  P. Kalas,et al.  Thermal Observations of Centaur 1997 CU26 , 1998 .

[23]  Petr Pravec,et al.  Occultation/Eclipse Events in Binary Asteroid 1991 VH , 1998 .

[24]  Uwe Fink,et al.  THE UNUSUAL SPECTRA OF 15 NEAR-EARTH ASTEROIDS AND EXTINCT COMET CANDIDATES , 1998 .

[25]  Martin G. Cohen,et al.  Spectral Irradiance Calibration in the Infrared. VIII. 5-14 Micron Spectroscopy of the Asteroids Ceres, Vesta, and Pallas , 1998 .

[26]  W. Hartmann,et al.  Meteorite Delivery via Yarkovsky Orbital Drift , 1998 .

[27]  Alan W. Harris,et al.  A Thermal Model for Near-Earth Asteroids , 1998 .

[28]  J. Lagerros THERMAL PHYSICS OF ASTEROIDS. IV. THERMAL INFRARED BEAMING , 1998 .

[29]  D. Tholen,et al.  Physical model of near-Earth asteroid 6489 Golevka (1991 JX) from optical and infrared observations , 1997 .

[30]  J. Lagerros THERMAL PHYSICS OF ASTEROIDS. III. IRREGULAR SHAPES AND ALBEDO VARIEGATIONS , 1997 .

[31]  A. Harris,et al.  SPIN VECTOR, SHAPE, AND SIZE OF THE AMOR ASTEROID (6053) 1993 BW3 , 1997 .

[32]  Alan W. Harris,et al.  On the Revision of Radiometric Albedos and Diameters of Asteroids , 1997 .

[33]  Richard P. Binzel,et al.  Vesta: Spin Pole, Size, and Shape from HST Images , 1997 .

[34]  Thermal physics of asteroids. II. Polarization of the thermal microwave emission from asteroids. , 1996 .

[35]  S. Ostro,et al.  Shape of Asteroid 433 Eros from Inversion of Goldstone Radar Doppler Spectra , 1996 .

[36]  Bruce Hapke,et al.  Applications of an Energy Transfer Model to Three Problems in Planetary Regoliths: The Solid-State Greenhouse, Thermal Beaming, and Emittance Spectra , 1996 .

[37]  J. Lagerros THERMAL PHYSICS OF ASTEROIDS. I. EFFECTS OF SHAPE, HEAT CONDUCTION AND BEAMING , 1996 .

[38]  D. Tholen,et al.  Infrared Observations of Distant Asteroids , 1996 .

[39]  Joseph M. Hahn,et al.  Completing the inventory of the solar system , 1996 .

[40]  Bradley G. Henderson,et al.  Near‐surface thermal gradients and mid‐IR emission spectra: A new model including scattering and application to real data , 1995 .

[41]  D. Balam,et al.  Flux Density Estimates at Millimeter Wavelengths of Asteroids Near Opposition from 1996 TO 2005 , 1995 .

[42]  D. Rubincam,et al.  Asteroid orbit evolution due to thermal drag , 1995 .

[43]  G. Rieke,et al.  The color temperature of (2060) Chiron: A warm and small nucleus , 1994 .

[44]  B. Jakosky,et al.  Near‐surface thermal gradients and their effects on mid‐infrared emission spectra of planetary surfaces , 1994 .

[45]  D. Mitchell,et al.  Microwave Imaging of Mercury's Thermal Emission at Wavelengths from 0.3 to 20.5 cm , 1994 .

[46]  Paul E. Johnson,et al.  The effect of surface roughness on lunar thermal emission spectra , 1993 .

[47]  B. Hapke Theory of reflectance and emittance spectroscopy , 1993 .

[48]  J. Peltoniemi,et al.  Thermal emission from a rough surface: ray optics approach , 1993 .

[49]  John W. Fowler,et al.  The IRAS Minor Planet Survey , 1992 .

[50]  C. Randall,et al.  A Monte Carlo model of polarized thermal emission from particulate planetary surfaces , 1992 .

[51]  Paul E. Johnson,et al.  Modeling the non-grey-body thermal emission from the full moon , 1991 .

[52]  I. Shapiro,et al.  Asteroid 1986 DA: Radar Evidence for a Metallic Composition , 1991, Science.

[53]  J. Spencer A rough-surface thermophysical model for airless planets , 1990 .

[54]  L. Lebofsky,et al.  Systematic biases in radiometric diameter determinations , 1989 .

[55]  D. Matson,et al.  Radiometry of near-earth asteroids. , 1989, The Astronomical journal.

[56]  Alan W. Harris,et al.  Application of photometric models to asteroids. , 1989 .

[57]  A. Harris,et al.  Asteroid lightcurve parameters , 1989 .

[58]  Steven J. Ostro Radar observations of asteroids , 1989 .

[59]  L. Lebofsky,et al.  Radiometry and a thermal modeling of asteroids , 1989 .

[60]  R. Greenberg,et al.  Infrared lightcurves of asteroids 532 Herculina and 45 Eugenia: Proof of the absence of significant albedo markings , 1988 .

[61]  Edward F. Tedesco,et al.  Discovery of M class objects among the near-earth asteroid population , 1987 .

[62]  Richard J. Rudy,et al.  A refined “standard” thermal model for asteroids based on observations of 1 Ceres and 2 Pallas , 1986 .

[63]  J. Goguen,et al.  Characterization of Io's Volcanic Activity by Infrared Polarimetry , 1985, Science.

[64]  Robert H. Brown,et al.  Ellipsoidal geometry in asteroid thermal models: The standard radiometric model , 1985 .

[65]  A. J. Meadows,et al.  8- to 13-μm spectra of asteroids , 1985 .

[66]  Stephen J. Keihm,et al.  Interpretation of the lunar microwave brightness temperature spectrum: feasibility of orbital heat flow mapping , 1984 .

[67]  Paul E. Johnson,et al.  10 μm polarimetry of ceres , 1983 .

[68]  F. Witteborn,et al.  Detection of silicate emission features in the 8- to 13-μm spectra of main belt asteroids , 1983 .

[69]  L. Lebofsky,et al.  Thermal properties of 433 Eros , 1979 .

[70]  D. Morrison,et al.  Radiometry of asteroids , 1979 .

[71]  D. Matson,et al.  Visual and radiometric photometry of 1580 Betulia , 1978 .

[72]  D. Matson,et al.  Visual and radiometric photometry of 1580 Betulia. [asteroid infrared observation] , 1978 .

[73]  O. Hansen An explication of the radiometric method for size and albedo determination. [asteroid IR photometry] , 1977 .

[74]  D. Morrison The diameter and thermal inertia of 433 Eros , 1976 .

[75]  R. Goldstein,et al.  Radar observations at 3.5 and 12.6 cm wavelength of asteroid 433 Eros , 1976 .

[76]  K. M. Merrill,et al.  7.5–13.5 Micron spectra of Ceres and Vesta , 1975 .

[77]  D. F. Winter,et al.  Directional characteristics of infrared emission from the moon , 1971 .

[78]  B. S. Carter,et al.  Measurements of Lunar Radiation in the Wavelength Range Centred at 1.2 mm , 1970 .

[79]  R. P. Ingalls,et al.  Radar observations of Icarus , 1969 .

[80]  D. Buhl,et al.  Reradiation and thermal emission from illuminated craters on the lunar surface , 1968 .

[81]  C. Heiles,et al.  The polarization and intensity of thermal radiation from a planetary surface , 1963 .

[82]  A. Wesselink Heat conductivity and nature of the lunar surface material , 1948 .