Effect of pre-annealing on the phase formation and efficiency of CZTS solar cell prepared by sulfurization of Zn/(Cu,Sn) precursor with H2S gas

[1]  J. H. Kim,et al.  A 5.1% efficient kesterite Cu2ZnSnS4 (CZTS) thin film solar cell prepared using modified sulfurization process , 2015 .

[2]  Heon-Jin Choi,et al.  Effect of precursor stacking structure on the phase formation and efficiency of Cu2ZnSnS4 solar cell prepared by sulfurization of Cu-Zn-Sn metal precursors with H2S gas , 2015 .

[3]  C. Westgate,et al.  Effects of sulfurization temperature on CZTS thin film solar cell performances , 2013 .

[4]  Debora Keller,et al.  Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells. , 2013, Nature materials.

[5]  M. Placidi,et al.  On the formation mechanisms of Zn-rich Cu2ZnSnS4 films prepared by sulfurization of metallic stacks , 2013 .

[6]  Jeong Yong Lee,et al.  Crystallization behaviour of co-sputtered Cu2ZnSnS4 precursor prepared by sequential sulfurization processes , 2013, Nanotechnology.

[7]  Supratik Guha,et al.  Thin film solar cell with 8.4% power conversion efficiency using an earth‐abundant Cu2ZnSnS4 absorber , 2013 .

[8]  C. H. Bhosale,et al.  Studies of compositional dependent CZTS thin film solar cells by pulsed laser deposition technique: An attempt to improve the efficiency , 2012 .

[9]  Hyesun Yoo,et al.  Sulfurization temperature effects on the growth of Cu2ZnSnS4 thin film , 2012 .

[10]  L. Romankiw,et al.  A High Efficiency Electrodeposited Cu2ZnSnS4 Solar Cell , 2012 .

[11]  Jooho Moon,et al.  A non-toxic, solution-processed, earth abundant absorbing layer for thin-film solar cells , 2012 .

[12]  J. Yun,et al.  Studies on Cu2ZnSnS4 (CZTS) absorber layer using different stacking orders in precursor thin films , 2011 .

[13]  B. Ahn,et al.  Fabrication of Cu2ZnSnS4 films by sulfurization of Cu/ZnSn/Cu precursor layers in sulfur atmosphere for solar cells , 2011 .

[14]  D. Hariskos,et al.  New world record efficiency for Cu(In,Ga)Se2 thin‐film solar cells beyond 20% , 2011 .

[15]  T. Seong,et al.  High-temperature stability of molybdenum (Mo) back contacts for CIGS solar cells: a route towards more robust back contacts , 2011 .

[16]  Kunihiko Tanaka,et al.  Influence of H2S concentration on the properties of Cu2ZnSnS4 thin films and solar cells prepared by sol–gel sulfurization , 2011 .

[17]  J. Scragg Copper Zinc Tin Sulfide Thin Films for Photovoltaics: Synthesis and Characterisation by Electrochemical Methods , 2011 .

[18]  Supratik Guha,et al.  The path towards a high-performance solution-processed kesterite solar cell ☆ , 2011 .

[19]  M. Yamazaki,et al.  Preparation of Cu2ZnSnS4 thin films by sulfurization of stacked metallic layers , 2008 .

[20]  Tadashi Ito,et al.  Enhanced Conversion Efficiencies of Cu2ZnSnS4-Based Thin Film Solar Cells by Using Preferential Etching Technique , 2008 .

[21]  B. Rezig,et al.  Fabrication and characterization of Cu2ZnSnS4 thin films deposited by spray pyrolysis technique , 2007 .

[22]  I. Parkin,et al.  The first single source deposition of tin sulfide coatings on glass: aerosol-assisted chemical vapour deposition using [Sn(SCH2CH2S)(2)] , 2001 .

[23]  Kentaro Ito,et al.  Electrical and Optical Properties of Stannite-Type Quaternary Semiconductor Thin Films , 1988 .