Optimal left and right additive Schwarz preconditioning for minimal residual methods with Euclidean and energy norms

For the solution of non-symmetric or indefinite linear systems arising from discretizations of elliptic problems, two-level additive Schwarz preconditioners are known to be optimal in the sense that convergence bounds for the preconditioned problem are independent of the mesh and the number of subdomains. These bounds are based on some kind of energy norm. However, in practice, iterative methods which minimize the Euclidean norm of the residual are used, despite the fact that the usual bounds are non-optimal, i.e., the quantities appearing in the bounds may depend on the mesh size; see [X.-C. Cai, J. Zou, Some observations on the l 2 convergence of the additive Schwarz preconditioned GMRES method, Numer. Linear Algebra Appl. 9 (2002) 379–397]. In this paper, iterative methods are presented which minimize the same energy norm in which the optimal Schwarz bounds are derived, thus maintaining the Schwarz optimality. As a consequence, bounds for the Euclidean norm minimization are also derived, thus providing a theoretical justification for the practical use of Euclidean norm minimization methods preconditioned with additive Schwarz. Both left and right preconditioners are considered, and relations between them are derived. Numerical experiments illustrate the theoretical developments. � 2006 Elsevier B.V. All rights reserved.

[1]  R. Weiss MINIMIZATION PROPERTIES AND SHORT RECURRENCES FOR KRYLOV SUBSPACE METHODS , 1994 .

[2]  Rüdiger Weiss,et al.  Parameter-Free Iterative Linear Solvers , 1996 .

[3]  Xiao-Chuan Cai,et al.  Restricted Additive Schwarz Preconditioners with Harmonic Overlap for Symmetric Positive Definite Linear Systems , 2003, SIAM J. Numer. Anal..

[4]  Xiao-Chuan Cai,et al.  A Restricted Additive Schwarz Preconditioner for General Sparse Linear Systems , 1999, SIAM J. Sci. Comput..

[5]  J. R. Scotti,et al.  Available From , 1973 .

[6]  H. Elman Iterative methods for large, sparse, nonsymmetric systems of linear equations , 1982 .

[7]  Miroslav Rozlozník,et al.  A framework for generalized conjugate gradient methods-with special emphasis on contributions by Rüdiger Weiss , 2002 .

[8]  Michele Benzi,et al.  Algebraic theory of multiplicative Schwarz methods , 2001, Numerische Mathematik.

[9]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[10]  Xiao-Chuan Cai,et al.  A Restricted Additive Schwarz Preconditioner with Harmonic Overlap for Symmetric Positive Definite Linear Systems ; CU-CS-920-01 , 2001 .

[11]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[12]  Olof B. Widlund,et al.  Domain Decomposition Algorithms for Indefinite Elliptic Problems , 2017, SIAM J. Sci. Comput..

[13]  Vjeran Hari,et al.  Applied Mathematics and Scientific Computing , 2010, Springer US.

[14]  M. Sarkis Partition of Unity Coarse Spaces and Schwarz Methods with Harmonic Overlap , 2002 .

[15]  Alfio Quarteroni,et al.  Domain Decomposition Methods for Partial Differential Equations , 1999 .

[16]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[17]  O. Axelsson Iterative solution methods , 1995 .

[18]  Martin H. Gutknecht,et al.  Changing the norm in conjugate gradient type algorithms , 1993 .

[19]  M. Sarkis Partition of Unity Coarse Spaces , 2007 .

[20]  Xiao-Chuan Cai,et al.  Some observations on the l2 convergence of the additive Schwarz preconditioned GMRES method , 2002, Numer. Linear Algebra Appl..

[21]  M. Sarkis A COARSE SPACE FOR ELASTICITY Partition of Unity Rigid Body Motions Coarse Space , 2003 .

[22]  S. Eisenstat,et al.  Variational Iterative Methods for Nonsymmetric Systems of Linear Equations , 1983 .

[23]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[24]  Daniel B. Szyld,et al.  Weighted max norms, splittings, and overlapping additive Schwarz iterations , 1999, Numerische Mathematik.

[25]  Azeddine Essai Weighted FOM and GMRES for solving nonsymmetric linear systems , 2004, Numerical Algorithms.

[26]  G. Starke Field-of-values analysis of preconditioned iterative methods for nonsymmetric elliptic problems , 1997 .

[27]  O. Widlund,et al.  12. Partition of Unity Coarse Spaces: Enhanced Versions, Discontinuous Coefficients and Applications to Elasticity , 2003 .

[28]  Andrew J. Wathen,et al.  Stopping criteria for iterations in finite element methods , 2005, Numerische Mathematik.

[29]  T. Manteuffel,et al.  A taxonomy for conjugate gradient methods , 1990 .

[30]  Anne Greenbaum,et al.  Iterative methods for solving linear systems , 1997, Frontiers in applied mathematics.

[31]  W. Hackbusch Iterative Solution of Large Sparse Systems of Equations , 1993 .

[32]  D. Braess Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics , 1995 .

[33]  Jinchao Xu,et al.  A preconditioned GMRES method for nonsymmetric or indefinite problems , 1992 .

[34]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[35]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[36]  Daniel B. Szyld,et al.  An Algebraic Convergence Theory for Restricted Additive Schwarz Methods Using Weighted Max Norms , 2001, SIAM J. Numer. Anal..

[37]  M. Eiermann,et al.  Geometric aspects of the theory of Krylov subspace methods , 2001, Acta Numerica.

[38]  Rüdiger Weiss,et al.  Error-Minimizing Krylov Subspace Methods , 1994, SIAM J. Sci. Comput..