Multiple thermal events recorded in IIE silicate inclusions: Evidence from in situ U–Pb dating of phosphates in Weekeroo Station

[1]  Yue-heng Yang,et al.  Allanite U–Th–Pb geochronology by ion microprobe , 2020 .

[2]  T. Kleine,et al.  Age and origin of IIE iron meteorites inferred from Hf-W chronology , 2019, Geochimica et Cosmochimica Acta.

[3]  S. Li,et al.  Mineralogy and In Situ Pb-Pb Dating of Silicate Inclusions in Miles (IIE) , 2019 .

[4]  W. Hsu,et al.  The nature of the L chondrite parent body's disruption as deduced from high‐pressure phases in the Sixiangkou L6 chondrite , 2018 .

[5]  D. Stöffler,et al.  Shock metamorphism of planetary silicate rocks and sediments: Proposal for an updated classification system , 2018 .

[6]  K. Litasov,et al.  Raman spectroscopy of various phosphate minerals and occurrence of tuite in the Elga IIE iron meteorite , 2017 .

[7]  R. Carlson,et al.  The accretion and impact history of the ordinary chondrite parent bodies , 2017 .

[8]  J. Wasson Formation of non-magmatic iron-meteorite group IIE , 2017 .

[9]  K. Hodges,et al.  ArAR — A software tool to promote the robust comparison of K–Ar and 40Ar/39Ar dates published using different decay, isotopic, and monitor-age parameters , 2016 .

[10]  V. Debaille,et al.  First finding of impact melt in the IIE Netschaëvo meteorite , 2016 .

[11]  P. Bievre,et al.  IUPAC-IUGS recommendation on the half life of 87Rb , 2015 .

[12]  L. Hecht,et al.  The formation of IIE iron meteorites investigated by the chondrule‐bearing Mont Dieu meteorite , 2015 .

[13]  A. Ruzicka Silicate-bearing iron meteorites and their implications for the evolution of asteroidal parent bodies , 2014 .

[14]  M. Bizzarro,et al.  The Absolute Chronology and Thermal Processing of Solids in the Solar Protoplanetary Disk , 2012, Science.

[15]  D. Upadhyay,et al.  Formation and exposure history of non-magmatic iron meteorites and winonaites: Clues from Sm and W isotopes , 2012 .

[16]  Q. Yin,et al.  In-situ SIMS U–Pb dating of phanerozoic apatite with low U and high common Pb , 2012 .

[17]  P. Renne,et al.  Response to the comment by W.H. Schwarz et al. on Joint determination of 40K decay constants and 40 , 2011 .

[18]  D. Bogard K–Ar ages of meteorites: Clues to parent-body thermal histories , 2011 .

[19]  P. Renne,et al.  Joint determination of 40K decay constants and 40Ar∗/40K for the Fish Canyon sanidine standard, and improved accuracy for 40Ar/39Ar geochronology , 2010 .

[20]  P. Renne,et al.  40Ar–39Ar dating of plagioclase grain size separates from silicate inclusions in IAB iron meteorites and implications for the thermochronological evolution of the IAB parent body , 2008 .

[21]  S. Eggins,et al.  Chemical systematics of conodont apatite determined by laser ablation ICPMS , 2006 .

[22]  S. Klemme,et al.  Trace element partitioning between apatite and silicate melts , 2006 .

[23]  T. Kleine,et al.  Tungsten isotopic compositions of iron meteorites: Chronological constraints vs. cosmogenic effects , 2006 .

[24]  M. Elburg,et al.  Sr and Pb isotopic composition of five USGS glasses (BHVO-2G, BIR-1G, BCR-2G, TB-1G, NKT-1G) , 2005 .

[25]  P. De Bièvre,et al.  Isotopic Compositions of the Elements, 2001 , 2005 .

[26]  D. Mittlefehldt,et al.  Portales Valley: Petrology of a metallic‐melt meteorite breccia , 2005 .

[27]  W. Hsu Rare earth element geochemistry and petrogenesis of miles (IIE) silicate inclusions , 2003 .

[28]  H. Takeda,et al.  Mineralogy of silicate inclusions of the Colomera IIE iron and crystallization of Cr-diopside and alkali feldspar from a partial melt , 2003 .

[29]  J. Wasson,et al.  The IAB Iron-Meteorite Complex: A Group, Five Subgroups, Numerous Grouplets, Closely Related, Mainly Formed by Crystal Segregation in Rapidly Cooling Melts , 2002 .

[30]  L. Taylor,et al.  Hf–W, Sm–Nd, and Rb–Sr isotopic evidence of late impact fractionation and mixing of silicates on iron meteorite parent bodies , 2001 .

[31]  T. Mccoy,et al.  Chronology and Petrology of Silicates From IIE Iron Meteorites: Evidence of a Complex Parent Body Evolution , 2000 .

[32]  L. Taylor,et al.  Petrogenesis of silicate inclusions in the Weekeroo Station IIE iron meteorite: Differentiation, remelting, and dynamic mixing , 1999 .

[33]  M. Ebihara,et al.  Petrology and chemistry of the Miles IIE iron. I: Description and petrology of twenty new silicate inclusions , 1997 .

[34]  M. Prinz,et al.  Petrology of silicate inclusions in the Miles IIE iron , 1996 .

[35]  C. Koeberl,et al.  A Philippinite with an Unusually Large Bubble: Gas Pressure and Noble Gas Composition , 1995 .

[36]  K. Marti,et al.  Discovery of an Unmelted H-Chondrite Inclusion in an Iron Meteorite , 1995, Science.

[37]  K. Keil,et al.  Shock metamorphism of ordinary chondrites , 1991 .

[38]  W. Lanford,et al.  Lead diffusion in apatite and zircon using ion implantation and Rutherford Backscattering techniques , 1991 .

[39]  R. Clayton,et al.  Watson: A new link in the IIE iron chain , 1991 .

[40]  W. Jianmin,et al.  A nonmagmatic origin of group-IIE iron meteorites , 1986 .

[41]  G. Manhès,et al.  Concordant 3,676 Myr U–Pb formation age for the Kodaikanal iron meteorite , 1985, Nature.

[42]  M. Murrell,et al.  The behavior of actinides, phosphorus, and rare earth elements during chondrite metamorphism , 1983 .

[43]  J. Delaney,et al.  Metamorphic reactions in mesosiderites - Origin of abundant phosphate and silica , 1982 .

[44]  J. Kramers,et al.  Approximation of terrestrial lead isotope evolution by a two-stage model , 1975 .

[45]  M. Tatsumoto,et al.  Time Differences in the Formation of Meteorites as Determined from the Ratio of Lead-207 to Lead-206 , 1973, Science.

[46]  G. Wasserburg,et al.  A precise 87Rb87Sr age and initial 87Sr86Sr for the Colomera iron meteorite , 1970 .

[47]  D. Burnett,et al.  Chemistry and mineralogy of the silicates and metal of the Kodaikanal meteorite. , 1969 .

[48]  G. Wasserburg,et al.  Potassium-Feldspar Phenocrysts in the Surface of Colomera, and Iron Meteorite , 1968, Science.

[49]  G. Wasserburg,et al.  87Rb-87Sr ages of silicate inclusions in iron meteorites , 1967 .

[50]  G. Wasserburg,et al.  Evidence for the formation of an iron meteorite at 3.8 × 109 years , 1967 .

[51]  G. Wasserburg,et al.  Strontium-Rubidium Age of an Iron Meteorite , 1965, Science.

[52]  M. Wadhwa,et al.  The uranium isotopic composition of the Earth and the Solar System , 2015 .

[53]  A. Ruzicka,et al.  Comparative petrology of silicates in the Udei Station (IAB) and Miles (IIE) iron meteorites: Implications for the origin of silicate-bearing irons , 2010 .

[54]  P. Candela,et al.  Apatite in Igneous Systems , 2002 .

[55]  Y. Sano,et al.  ION MICROPROBE U-PB DATING OF APATITE , 1999 .

[56]  Timothy J. McCoy,et al.  Non-chondritic meteorites from asteroidal bodies , 1998 .

[57]  W. Agosto,et al.  Allan Hills A77219, the first Antarctic mesosiderite. , 1980 .

[58]  S. Niemeyer I-Xe and 40Ar-39Ar dating of silicate from Weekeroo Station and Netschaëvo IIE iron meteorites , 1980 .

[59]  E. Scott,et al.  Chemical classification of iron meteorites. VIII - Groups IC, IIE, IIIF and 97 other irons , 1976 .

[60]  V. Buchwald Handbook of iron meteorites , 1975 .

[61]  K. Keil,et al.  Mineralogy and petrology of silicate inclusions in iron meteorites , 1970 .

[62]  G. Wasserburg,et al.  40Ar40K ages of silicate inclusions in iron meteorites , 1967 .