Real-space measurement of orbital electron populations for Li1-xCoO2

[1]  J. Tarascon,et al.  Capturing dynamic ligand-to-metal charge transfer with a long-lived cationic intermediate for anionic redox , 2022, Nature Materials.

[2]  Zhigang Geng,et al.  Doping regulation in transition metal compounds for electrocatalysis. , 2021, Chemical Society reviews.

[3]  Liquan Chen,et al.  Oxygen-redox reactions in LiCoO2 cathode without O–O bonding during charge-discharge , 2021 .

[4]  Daniel A. Cogswell,et al.  Electrochemical ion insertion from the atomic to the device scale , 2020, Nature Reviews Materials.

[5]  William E. Gent,et al.  Design Rules for High-Valent Redox in Intercalation Electrodes , 2020 .

[6]  J. C. H. Spence,et al.  Electron Microdiffraction , 2020, Springer US.

[7]  Arumugam Manthiram,et al.  A reflection on lithium-ion battery cathode chemistry , 2020, Nature Communications.

[8]  Yong‐Mook Kang,et al.  Advances in the Cathode Materials for Making a Breakthrough in the Li Rechargeable Batteries. , 2020, Angewandte Chemie.

[9]  Yong‐Mook Kang,et al.  Reversible Anionic Redox Activities in Conventional LiNi1/3Co1/3Mn1/3O2 Cathodes. , 2020, Angewandte Chemie.

[10]  B. Iversen,et al.  Electron density studies in materials research. , 2019, Chemistry.

[11]  C. Marianetti,et al.  Compositional phase stability of correlated electron materials within DFT+DMFT , 2019, 1903.10436.

[12]  Gerbrand Ceder,et al.  Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides , 2019, Nature Materials.

[13]  Jean-Marie Tarascon,et al.  Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries , 2018 .

[14]  Biao Li,et al.  Anionic Redox in Rechargeable Lithium Batteries , 2017, Advanced materials.

[15]  D. Khomskii,et al.  Orbital physics in transition metal compounds: new trends , 2017, 1711.05409.

[16]  Rahul Malik,et al.  The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. , 2016, Nature chemistry.

[17]  Siqi Shi,et al.  Multi-scale computation methods: Their applications in lithium-ion battery research and development , 2016 .

[18]  Feixiang Wu,et al.  Li-ion battery materials: present and future , 2015 .

[19]  V. Petříček,et al.  Crystallographic Computing System JANA2006: General features , 2014 .

[20]  Linda F. Nazar,et al.  Positive Electrode Materials for Li-Ion and Li-Batteries , 2010 .

[21]  Linda F. Nazar,et al.  Positive Electrode Materials for Li-Ion and Li-Batteries† , 2010 .

[22]  W. Jaegermann,et al.  Changes in the crystal and electronic structure of LiCoO(2) and LiNiO(2) upon Li intercalation and de-intercalation. , 2009, Physical chemistry chemical physics : PCCP.

[23]  J. Hanson,et al.  Nanoscale disorder in CaCu3Ti4O12: a new route to the enhanced dielectric response. , 2007, Physical review letters.

[24]  Xiao‐Qing Yang,et al.  Investigation of the Charge Compensation Mechanism on the Electrochemically Li‐Ion Deintercalated Li1‐xCo1/3Ni1/3Mn1/3O2 Electrode System by Combination of Soft and Hard X‐Ray Absorption Spectroscopy. , 2006 .

[25]  Xiao‐Qing Yang,et al.  Investigation of the charge compensation mechanism on the electrochemically Li-ion deintercalated Li1-xCo1/3Ni1/3Mn1/3O2 electrode system by combination of soft and hard X-ray absorption spectroscopy. , 2005, Journal of the American Chemical Society.

[26]  Jin-Cheng Zheng,et al.  On the sensitivity of electron and X-ray scattering factors to valence charge distributions , 2005 .

[27]  G. Ceder,et al.  In-Situ X-ray Absorption Spectroscopic Study on Variation of Electronic Transitions and Local Structure of LiNi1/3Co1/3Mn1/3O2 Cathode Material during Electrochemical Cycling , 2005 .

[28]  J. Dahn,et al.  Methods to obtain excellent capacity retention in LiCoO2 cycled to 4.5 V , 2004 .

[29]  G. Ceder,et al.  Role of hybridization in NaxCoO2 and the effect of hydration. , 2003, Physical review letters.

[30]  P Coppens,et al.  Chemical applications of X-ray charge-density analysis. , 2001, Chemical reviews.

[31]  Y. Tokura,et al.  Orbital physics in transition-metal oxides , 2000, Science.

[32]  R. Semiat Present and Future , 2000 .

[33]  J. Tarascon,et al.  In Situ Structural and Electrochemical Study of Ni1-xCoxO2 Metastable Oxides Prepared by Soft Chemistry , 1999 .

[34]  J. Zuo,et al.  Direct observation of d-orbital holes and Cu–Cu bonding in Cu2O , 1999, Nature.

[35]  G. Ceder,et al.  Identification of cathode materials for lithium batteries guided by first-principles calculations , 1998, Nature.

[36]  Jing Zhu,et al.  The effect of boron on charge density distribution in Ni3Al , 1997 .

[37]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[38]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[39]  J. Rouxel Anion–Cation Redox Competition and the Formation of New Compounds in Highly Covalent Systems , 1996 .

[40]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[41]  Peter Blaha,et al.  Full-potential, linearized augmented plane wave programs for crystalline systems , 1990 .

[42]  Arthur Klausner New Trends , 1983, Bio/Technology.

[43]  P. Coppens,et al.  Generalized relations between d-orbital occupancies of transition-metal atoms and electron-density multipole population parameters from X-ray diffraction data , 1983 .

[44]  E. Stevens,et al.  Refinement of metal d-orbital occupancies from X-ray diffraction data , 1979 .

[45]  L. Klotz New Directions , 1979, The Canadian journal of urology.

[46]  K. Schwarz,et al.  WIEN2k: An Augmented Plane Wave Plus Local Orbitals Program for Calculating Crystal Properties , 2019 .

[47]  C. Gatti Chemical bonding in crystals: new directions , 2005 .

[48]  J. Zuo,et al.  Orbital ordering in LaMnO3: estimates of structure factors and comparison of measurement methods. , 2002, Acta crystallographica. Section A, Foundations of crystallography.

[49]  J. Zuo Quantitative Convergent Beam Electron Diffraction , 1998 .

[50]  R. Bader,et al.  Atoms in molecules , 1990 .

[51]  GENERAL FEATURES. , 1932, Science.