On a formula for the h-index
暂无分享,去创建一个
[1] J. E. Hirsch,et al. An index to quantify an individual's scientific research output , 2005, Proc. Natl. Acad. Sci. USA.
[2] Bárbara S. Lancho-Barrantes,et al. The iceberg hypothesis revisited , 2010, Scientometrics.
[3] Quentin L. Burrell,et al. The h-index: A case of the tail wagging the dog? , 2013, J. Informetrics.
[4] M. Sales-Pardo,et al. Effectiveness of Journal Ranking Schemes as a Tool for Locating Information , 2008, PloS one.
[5] Aggelos Bletsas,et al. Hirsch index rankings require scaling and higher moment , 2009 .
[6] Juan E. Iglesias,et al. Scaling the h-index for different scientific ISI fields , 2006, Scientometrics.
[7] András Schubert,et al. Hirsch-type indices for characterizing networks , 2009, Scientometrics.
[8] D. Sornette,et al. Stretched exponential distributions in nature and economy: “fat tails” with characteristic scales , 1998, cond-mat/9801293.
[9] Matjaz Perc,et al. Zipf's law and log-normal distributions in measures of scientific output across fields and institutions: 40 years of Slovenia's research as an example , 2010, J. Informetrics.
[10] Wolfgang Glänzel,et al. A systematic analysis of Hirsch-type indices for journals , 2007, J. Informetrics.
[11] Wolfgang Glänzel,et al. Characteristic scores and scales: A bibliometric analysis of subject characteristics based on long-term citation observation , 2007, J. Informetrics.
[12] S. Redner. How popular is your paper? An empirical study of the citation distribution , 1998, cond-mat/9804163.
[13] Leo Egghe,et al. Thoughts on uncitedness: Nobel laureates and Fields medalists as case studies , 2011, J. Assoc. Inf. Sci. Technol..
[14] E K Lenzi,et al. q-exponential distribution in urban agglomeration. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[15] Leo Egghe,et al. An informetric model for the Hirsch-index , 2006, Scientometrics.
[16] C. Shalizi. Maximum Likelihood Estimation for q-Exponential (Tsallis) Distributions , 2007, math/0701854.
[17] C. Tsallis,et al. Are citations of scientific papers a case of nonextensivity? , 1999, cond-mat/9903433.
[18] Gangan Prathap,et al. The 100 most prolific economists using the p-index , 2010, Scientometrics.
[19] Thierry Lafouge. The source-item coverage of the exponential function , 2007, J. Informetrics.
[20] C. Tsallis. Possible generalization of Boltzmann-Gibbs statistics , 1988 .
[21] W. Weibull. A Statistical Distribution Function of Wide Applicability , 1951 .
[22] Peter Vinkler,et al. The πv-index: a new indicator to characterize the impact of journals , 2010, Scientometrics.
[23] Anthony F. J. van Raan. Comparison of the Hirsch-index with standard bibliometric indicators and with peer judgment for 147 chemistry research groups , 2013, Scientometrics.
[24] A. W. Kemp,et al. Univariate Discrete Distributions , 1993 .
[25] Vincent Larivière,et al. Modeling a century of citation distributions , 2008, J. Informetrics.
[26] Quentin L. Burrell. The individual author’s publication–citation process: theory and practice , 2013, Scientometrics.
[27] Wolfgang Glänzel,et al. On the h-index - A mathematical approach to a new measure of publication activity and citation impact , 2006, Scientometrics.
[28] Juan Miguel Campanario. Distribution of ranks of articles and citations in journals , 2010 .
[29] Lucio Bertoli-Barsotti,et al. A New Bibliometric Index Based on the Shape of the Citation Distribution , 2014, PloS one.
[30] Fred Y. Ye. An investigation on mathematical models of the h-index , 2008, Scientometrics.
[31] Chrisovaladis Malesios,et al. Some variations on the standard theoretical models for the h‐index: A comparative analysis , 2015, J. Assoc. Inf. Sci. Technol..
[32] Quentin L. Burrell,et al. Modeling citation behavior in Management Science journals , 2006, Inf. Process. Manag..
[33] Leo Egghe,et al. Relations between the continuous and the discrete Lotka power function , 2005, J. Assoc. Inf. Sci. Technol..
[34] Quentin L. Burrell,et al. Extending Lotkaian informetrics , 2008, Inf. Process. Manag..
[35] Tommaso Lando,et al. A geometric model for the analysis of citation distributions , 2015 .
[36] J. Hirsch. Does the h index have predictive power? , 2007, Proceedings of the National Academy of Sciences.
[37] Peter Taylor,et al. Citation Statistics , 2009, ArXiv.
[38] Quentin L. Burrell,et al. Hirsch's h-index: A stochastic model , 2007, J. Informetrics.
[39] Fred Y. Ye,et al. A unification of three models for the h-index , 2011, J. Assoc. Inf. Sci. Technol..
[40] S. Redner. Citation statistics from 110 years of physical review , 2005, physics/0506056.
[41] Ash Mohammad Abbas,et al. Bounds and Inequalities Relating h-Index, g-Index, e-Index and Generalized Impact Factor: An Improvement over Existing Models , 2011, PloS one.
[42] R. Rousseau,et al. LOTKA: A program to fit a power law distribution to observed frequency data. , 2000 .
[43] L. Egghe. Power Laws in the Information Production Process: Lotkaian Informetrics , 2005 .
[44] Sauro Succi,et al. Statistical regularities in the rank-citation profile of scientists , 2011, Scientific reports.
[45] Claudio Castellano,et al. Universality of citation distributions: Toward an objective measure of scientific impact , 2008, Proceedings of the National Academy of Sciences.
[46] Lucio Bertoli-Barsotti. Improving a decomposition of the h-index , 2013, J. Assoc. Inf. Sci. Technol..
[47] Leo Egghe,et al. The Hirsch index of a shifted Lotka function and its relation with the impact factor , 2012, J. Assoc. Inf. Sci. Technol..
[48] Anthony F. J. van Raan,et al. Two-step competition process leads to quasi power-law income distributions , 2001 .
[49] Aristoklis D. Anastasiadis,et al. Tsallis q-exponential describes the distribution of scientific citations—a new characterization of the impact , 2008, Scientometrics.
[50] Derek de Solla Price,et al. A general theory of bibliometric and other cumulative advantage processes , 1976, J. Am. Soc. Inf. Sci..
[51] Germinal Cocho,et al. On the behavior of journal impact factor rank-order distribution , 2006, J. Informetrics.
[52] Paul Nicholls,et al. Estimation of Zipf parameters , 1987 .
[53] Gangan Prathap,et al. The zynergy‐index and the formula for the h‐index , 2014, J. Assoc. Inf. Sci. Technol..
[54] Wolfgang Glänzel,et al. On some new bibliometric applications of statistics related to the h-index , 2008, Scientometrics.
[55] J. Laherrere. Distributions de type fractal parabolique dans la Nature , 1996 .
[56] S. Schneider,et al. Expert credibility in climate change , 2010, Proceedings of the National Academy of Sciences.
[57] Gangan Prathap,et al. Is there a place for a mock h-index? , 2010, Scientometrics.
[58] Quentin L. Burrell. Formulae for the h-index: A lack of robustness in Lotkaian informetrics? , 2013, J. Assoc. Inf. Sci. Technol..
[59] G. Cocho,et al. Universality of Rank-Ordering Distributions in the Arts and Sciences , 2009, PloS one.
[60] András Schubert,et al. Hirsch-index for countries based on Essential Science Indicators data , 2007, Scientometrics.
[61] Peter Vinkler,et al. The ź-index , 2009 .