In-Line Phase-Contrast X-ray Imaging and Tomography for Materials Science

X-ray phase-contrast imaging and tomography make use of the refraction of X-rays by the sample in image formation. This provides considerable additional information in the image compared to conventional X-ray imaging methods, which rely solely on X-ray absorption by the sample. Phase-contrast imaging highlights edges and internal boundaries of a sample and is thus complementary to absorption contrast, which is more sensitive to the bulk of the sample. Phase-contrast can also be used to image low-density materials, which do not absorb X-rays sufficiently to form a conventional X-ray image. In the context of materials science, X-ray phase-contrast imaging and tomography have particular value in the 2D and 3D characterization of low-density materials, the detection of cracks and voids and the analysis of composites and multiphase materials where the different components have similar X-ray attenuation coefficients. Here we review the use of phase-contrast imaging and tomography for a wide variety of materials science characterization problems using both synchrotron and laboratory sources and further demonstrate the particular benefits of phase contrast in the laboratory setting with a series of case studies.

[1]  T. Ishikawa,et al.  Zernike phase-contrast X-ray microscope with an X-ray refractive lens , 2003 .

[2]  Januar Gotama,et al.  X-ray ultramicroscopy: A new method for observation and measurement of filler dispersion in thermoplastic composites , 2008 .

[4]  Jun Shen,et al.  Fabrication of gradient density SiO2 aerogel , 2011 .

[5]  Marco Stampanoni,et al.  Investigation of liquid water in gas diffusion layers of polymer electrolyte fuel cells using X-ray tomographic microscopy , 2011 .

[6]  K. Uesugi,et al.  Assessment of Damage and Fracture Behaviours in a Cast Aluminium Alloy via In Situ Synchrotron Microtomography , 2006 .

[7]  K. Ueda,et al.  Phase-contrast X-ray imaging of the gas diffusion layer of fuel cells. , 2010, Journal of synchrotron radiation.

[8]  R. Longo,et al.  Quantitative 3D refractive index decrement reconstruction using single-distance phase-contrast tomography data , 2011 .

[9]  A. Sinha,et al.  Study of pyro-carbon coated alumina kernel using mixed contrast transfer based X-ray phase retrieval technique , 2011 .

[10]  K. Fezzaa,et al.  Phase contrast stereometry: fatigue crack mapping in three dimensions , 2005 .

[11]  C. Raub,et al.  Synchrotron X-ray microtomography ( on a micron scale ) provides three-dimensional imaging representation of bone ingrowth in calcium phosphate biomaterials , 2003 .

[12]  Timur E. Gureyev,et al.  X-ray phase-contrast microscopy of paper , 2001 .

[13]  A G Peele,et al.  Phase imaging using a polychromatic x-ray laboratory source. , 2008, Optics express.

[14]  D. Hutmacher,et al.  The correlation of pore morphology, interconnectivity and physical properties of 3D ceramic scaffolds with bone ingrowth. , 2009, Biomaterials.

[15]  P. Cloetens,et al.  Holotomography: Quantitative phase tomography with micrometer resolution using hard synchrotron radiation x rays , 1999 .

[16]  E. Hashimoto,et al.  Possibility of Computed Tomographic Reconstruction of Cracks from X-ray Refraction Contrast , 2005 .

[17]  Andrei V. Bronnikov,et al.  Reconstruction formulas in phase-contrast tomography , 1999 .

[18]  K. Nugent,et al.  Quantitative Phase Imaging Using Hard X Rays. , 1996, Physical review letters.

[19]  A Olivo,et al.  Experimental validation of a simple model capable of predicting the phase contrast imaging capabilities of any x-ray imaging system , 2006, Physics in medicine and biology.

[20]  F Rustichelli,et al.  Phase-contrast imaging of thin biomaterials. , 2001, Biomaterials.

[21]  Simon Zabler,et al.  Fresnel-propagated submicrometer x-ray imaging of water-immersed tooth dentin. , 2007, Optics letters.

[22]  B. Müller,et al.  Synchrotron‐Based Micro‐CT and Refraction‐Enhanced Micro‐CT for Non‐Destructive Materials Characterisation , 2009 .

[23]  I. Sinclair,et al.  Assessment of the fatigue crack closure phenomenon in damage-tolerant aluminium alloy by in-situ high-resolution synchrotron X-ray microtomography , 2003 .

[24]  Y. Kagoshima,et al.  10 keV X-Ray Phase-Contrast Microscopy for Observing Transparent Specimens , 2001 .

[25]  S. Dover,et al.  X‐ray microscopy using computerized axial tomography , 1985, Journal of microscopy.

[26]  S. Wilkins,et al.  X-Ray Phase-Contrast Tomography for Quantitative Characterisation of Self-Healing Polymers , 2010 .

[27]  M Stampanoni,et al.  Implementation of a fast method for high resolution phase contrast tomography. , 2006, Optics express.

[28]  Françoise Peyrin,et al.  Observation of microstructure and damage in materials by phase sensitive radiography and tomography , 1997 .

[29]  Kenneth W. Tobin,et al.  Metrology-based Control for Micro-manufacturing , 2001 .

[30]  E. Förster,et al.  Double crystal diffractometry for the characterization of targets for laser fusion experiments , 1980 .

[31]  C. David,et al.  Differential x-ray phase contrast imaging using a shearing interferometer , 2002 .

[32]  K. Uesugi,et al.  In Situ Observation of Fracture of Aluminium Foam Using Synchrotron X-Ray Microtomography , 2005 .

[33]  O. Landen,et al.  Refraction-enhanced x-ray radiography for inertial confinement fusion and laser-produced plasma applications , 2009 .

[34]  Shusaku Shiozawa,et al.  Research and Development of HTTR Coated Particle Fuel , 1991 .

[35]  K.,et al.  Quantitative assessment of microstructure and its effects on compression behavior of aluminum foams via high-resolution synchrotron X-ray tomography , 2006 .

[36]  Keith A. Nugent,et al.  Phase contrast radiography. II. Imaging of complex objects , 2005 .

[37]  Ian Sinclair,et al.  A 3D measurement procedure for internal local crack driving forces via synchrotron X-ray microtomography , 2004 .

[38]  Tilo Baumbach,et al.  Criticality in single-distance phase retrieval. , 2011, Optics express.

[39]  X-ray phase contrast imaging study of activated carbon/carbon composite , 1999 .

[40]  Laurent Orgéas,et al.  X-ray phase contrast microtomography for the analysis of the fibrous microstructure of SMC composites , 2008 .

[41]  Lin Guo,et al.  Quantitative study of interior nanostructure in hollow zinc oxide particles on the basis of nondestructive x-ray nanotomography , 2009 .

[42]  M. Teague Deterministic phase retrieval: a Green’s function solution , 1983 .

[43]  T. Gureyev,et al.  The binary dissector: phase contrast tomography of two- and three-material objects from few projections. , 2008, Optics express.

[44]  J. C. Elliott,et al.  X‐ray microtomography , 1982, Journal of microscopy.

[45]  Alexander Sasov,et al.  Desktop x-ray microtomography , 2001, SPIE LASE.

[46]  D. Gabor A New Microscopic Principle , 1948, Nature.

[47]  Peter Cloetens,et al.  Characterization of internal damage in a MMCp using X-ray synchrotron phase contrast microtomography , 1999 .

[48]  S. Wilkins,et al.  Quantitative X‐ray projection microscopy: phase‐contrast and multi‐spectral imaging , 2002, Journal of microscopy.

[49]  Anatoly Snigirev,et al.  Imaging and microtomography facility at the ESRF beamline ID 22 , 1999, Optics & Photonics.

[50]  P. Cloetens,et al.  Optimization of phase contrast imaging using hard x rays , 2005 .

[51]  J. Ambrose,et al.  Computerized transverse axial scanning (tomography): Part 2. Clinical application* , 1973 .

[52]  P. Cloetens,et al.  Phase objects in synchrotron radiation hard x-ray imaging , 1996 .

[53]  S W Wilkins,et al.  Phase-contrast radiography. , 1998, Radiographics : a review publication of the Radiological Society of North America, Inc.

[54]  A. Snigirev,et al.  On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation , 1995 .

[55]  L. Mancini,et al.  An investigation of mortars affected by alkali-silica reaction by X-ray synchrotron microtomography: a preliminary study , 2009 .

[56]  Anna Burvall,et al.  Phase Retrieval in X-ray Phase-contrast Imaging Suitable for Tomography , 2022 .

[57]  A. Momose Phase-sensitive imaging and phase tomography using X-ray interferometers. , 2003, Optics express.

[58]  Michael Preuss,et al.  Three-dimensional characterization of fatigue cracks in Ti-6246 using X-ray tomography and electron backscatter diffraction , 2009 .

[59]  S. Wilkins,et al.  Contrast and resolution in imaging with a microfocus x-ray source , 1997 .

[60]  A. Snigirev,et al.  Three-dimensional imaging of paper by use of synchrotron X-ray microtomography , 2001 .

[61]  J. Miao,et al.  Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens , 1999, Nature.

[62]  S. R. Stock,et al.  X-ray microtomography of materials , 1999 .

[63]  Timur E. Gureyev,et al.  Refracting Röntgen’s rays: Propagation-based x-ray phase contrast for biomedical imaging , 2009 .

[64]  F. Marone,et al.  Determination of Material Properties of Gas Diffusion Layers: Experiments and Simulations Using Phase Contrast Tomographic Microscopy , 2009 .

[65]  S. W. Wilkins,et al.  Quantitative methods in phase-contrast x-ray imaging , 2000, Journal of Digital Imaging.

[66]  Michael Herbig,et al.  3-D growth of a short fatigue crack within a polycrystalline microstructure studied using combined diffraction and phase-contrast X-ray tomography , 2011 .

[67]  Sasov,et al.  Desktop X‐ray microscopy and microtomography , 1998, Journal of microscopy.

[68]  Yu. A. Kravtsov,et al.  Principles of statistical radiophysics. 4. Wave propagation through random media. , 1989 .

[69]  G. Hounsfield Computerized transverse axial scanning (tomography): Part I. Description of system. 1973. , 1973, The British journal of radiology.

[70]  G. Hounsfield Computerized transverse axial scanning (tomography). 1. Description of system. , 1973, The British journal of radiology.

[71]  V. Kohn,et al.  Study of micropipe structure in SiC by x-ray phase contrast imaging , 2007 .

[72]  Hongtao Cui,et al.  X-ray computed tomography in Zernike phase contrast mode at 8 keV with 50-nm resolution using Cu rotating anode X-ray source , 2007 .

[73]  M Stampanoni,et al.  3D imaging of microstructure of spruce wood. , 2007, Journal of structural biology.

[74]  D Chappard,et al.  Synchrotron X-ray microtomography (on a micron scale) provides three-dimensional imaging representation of bone ingrowth in calcium phosphate biomaterials. , 2003, Biomaterials.

[75]  E. Ingham,et al.  NONWOVEN SCAFFOLDS OF IMPROVED DESIGN FOR THE TISSUE ENGINEERING OF THE ANTERIOR CRUCIATE LIGAMENT , 2006 .

[76]  Christian Germain,et al.  Microstructure reconstruction of fibrous C/C composites from X-ray microtomography , 2007 .

[77]  Chris Jacobsen,et al.  X-ray holographic microscopy using photoresists , 1990, Annual Meeting Optical Society of America.

[78]  S. I. Fedotov,et al.  Measurements of the parameters of shell targets for laser thermonuclear fusion using an x-ray schlieren method , 1979 .

[79]  J. Je,et al.  SR phase contrast imaging to address the evolution of defects during SiC growth , 2011 .

[80]  U. Bonse,et al.  AN X‐RAY INTERFEROMETER , 1965 .

[81]  Wilson K. S. Chiu,et al.  Nondestructive Reconstruction and Analysis of SOFC Anodes Using X-ray Computed Tomography at Sub-50 nm Resolution , 2008 .

[82]  Yakov I Nesterets,et al.  Some simple rules for contrast, signal-to-noise and resolution in in-line x-ray phase-contrast imaging. , 2008, Optics express.

[83]  Hard-x-ray phase-difference microscopy with a low-brilliance laboratory x-ray source , 2011 .

[84]  Alexandre Velhinho,et al.  Evaluation of Al/SiC Wetting Characteristics in Functionally Graded Metal-Matrix Composites by Synchrotron Radiation Microtomography , 2003 .

[85]  Xizeng Wu,et al.  X-Ray cone-beam phase tomography formulas based on phase-attenuation duality. , 2005, Optics express.

[86]  D Paterson,et al.  X-ray phase imaging: Demonstration of extended conditions for homogeneous objects. , 2004, Optics express.

[87]  S. Wilkins,et al.  Generalized eikonal of partially coherent beams and its use in quantitative imaging. , 2004, Physical review letters.

[88]  Franz Pfeiffer,et al.  X-ray phase imaging with a grating interferometer. , 2005, Optics express.

[89]  M Browne,et al.  Microtomography assessment of failure in acrylic bone cement. , 2005, Biomaterials.

[90]  C. Moran,et al.  X-ray absorption and phase contrast imaging to study the interplay between plant roots and soil structure , 2004, Plant and Soil.

[91]  Keith A. Nugent,et al.  X-ray phase contrast tomography with a bending magnet source , 2005 .

[92]  Francesca Cosmi,et al.  Phase contrast micro-tomography and morphological analysis of a short carbon fibre reinforced polyamide , 2011 .

[93]  Martine Wevers,et al.  Towards 3-D petrography: application of microfocus computer tomography in geological science , 2001 .

[94]  Henry N. Chapman,et al.  Applications of a CCD detector in scanning transmission x‐ray microscope , 1995 .

[95]  Garth J. Williams,et al.  Three-dimensional mapping of a deformation field inside a nanocrystal , 2006, Nature.

[96]  G. Vignoles,et al.  Benefits of X‐Ray CMT for the Modeling of C/C Composites , 2011 .

[97]  Jeff Gelb,et al.  Sub-micron resolution CT for failure analysis and process development , 2008 .

[98]  Shri Ramaswamy,et al.  Visualization and characterization of high resolution 3D images of paper samples , 2006 .

[99]  H Yoshimura,et al.  Application of SEM-modified X-ray microscope to entomology and histology, and effects of X-ray coherence in imaging. , 2000, Journal of electron microscopy.

[100]  Andrew Pogany,et al.  Optical phase retrieval by use of first Born- and Rytov-type approximations. , 2004, Applied optics.

[101]  S. Mayo,et al.  Characterization of Cold Spray Titanium Deposits by X-Ray Microscopy and Microtomography , 2008, Microscopy and Microanalysis.

[102]  Richard A. London,et al.  X-Ray Imaging Of Cryogenic Deuterium-Tritium Layers In A Beryllium Shell , 2005 .

[103]  J. Werkmeister,et al.  A comparison of the effects of fibre alignment of smooth and textured fibres in electrospun membranes on fibroblast cell adhesion , 2010, Biomedical materials.

[104]  E. Maire,et al.  On the application of x-ray microtomography in the field of materials science , 2001 .

[105]  T. Weitkamp,et al.  ANKAphase: software for single-distance phase retrieval from inline X-ray phase-contrast radiographs. , 2011, Journal of synchrotron radiation.

[106]  Sheridan C. Mayo,et al.  Applying SEM‐Based X‐ray Microtomography to Observe Self‐Healing in Solvent Encapsulated Thermoplastic Materials , 2010 .

[107]  S. Stock Recent advances in X-ray microtomography applied to materials , 2008 .

[108]  S. Wilkins,et al.  Phase-contrast imaging using polychromatic hard X-rays , 1996, Nature.

[109]  A. Shukla,et al.  Diffusion layer parameters influencing optimal fuel cell performance , 2000 .

[110]  Atsushi Momose,et al.  Phase-contrast x-ray computed tomography for observing biological specimens and organic materials , 1995 .

[111]  F. De Carlo,et al.  Noninvasive three-dimensional visualization of defects and crack propagation in layered foam structures by phase-contrast microimaging , 2008 .

[112]  O. Bunk,et al.  Tomographic reconstruction of three-dimensional objects from hard X-ray differential phase contrast projection images , 2007 .

[113]  H. Toda,et al.  Strength and Fracture of Aluminium Alloys , 2003 .

[114]  S. Wilkins,et al.  Simultaneous phase and amplitude extraction from a single defocused image of a homogeneous object , 2002, Journal of microscopy.

[115]  Manuel Dierick,et al.  Bronnikov-aided correction for x-ray computed tomography. , 2009, Journal of the Optical Society of America. A, Optics, image science, and vision.

[116]  斯蒂芬·威廉·威尔金斯 Simplified conditions and configurations for phase-contrast imaging with hard X-rays , 1996 .

[117]  E Castelli,et al.  Phase retrieval in quantitative x-ray microtomography with a single sample-to-detector distance. , 2011, Optics letters.

[118]  V. I. Tatarskiĭ,et al.  Wave propagation through random media , 1989 .

[119]  C. Jacobsen,et al.  SCANNING TRANSMISSION X-RAY MICROSCOPY WITH A SEGMENTED DETECTOR , 2003 .

[120]  H H Barrett,et al.  High-resolution computed tomography of the normal rat nephrogram. , 1980, Investigative radiology.

[121]  S. Wilkins,et al.  Hard x-ray quantitative non-interferometric phase-contrast microscopy , 1999 .

[122]  P. Cloetens,et al.  Damage assessment in an Al/SiC composite during monotonic tensile tests using synchrotron X-ray microtomography , 1997 .

[123]  Stanislav I. Rokhlin,et al.  Phase-contrast x-ray imaging for nondestructive evaluation of materials , 2006 .

[124]  S. Wilkins,et al.  Quantitative in-line phase-contrast imaging with multienergy X rays. , 2001, Physical review letters.

[125]  T E Gureyev,et al.  Phase-contrast tomography of single-material objects from few projections. , 2008, Optics express.

[126]  David J Vine,et al.  Phase-diverse coherent diffractive imaging: high sensitivity with low dose. , 2011, Physical review letters.

[127]  Kamel Fezzaa,et al.  Quantitative characterization of inertial confinement fusion capsules using phase contrast enhanced x-ray imaging , 2005 .

[128]  G. Hounsfield,et al.  Computerized transverse axial tomography. , 1973, The British journal of radiology.

[129]  Application of X-ray phase-contrast imaging technique in the study of pyrocarbon-coated zirconia kernels , 2009 .

[130]  D. Paganin,et al.  2D and 3D X-ray phase retrieval of multi-material objects using a single defocus distance. , 2010, Optics express.

[131]  M. L. Young,et al.  Effect of ceramic preform geometry on load partitioning in Al2O3–Al composites with three-dimensional periodic architecture , 2009 .