Making sense of non-Hermitian Hamiltonians
暂无分享,去创建一个
[1] H. Jones,et al. 6th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics , 2008 .
[2] N. Hatano,et al. Some Properties of the Resonant State in Quantum Mechanics and Its Computation , 2007, 0705.1388.
[3] Tomio Petrosky,et al. The Liouville Space Extension of Quantum Mechanics , 2007 .
[4] T. Curtright,et al. Planar super-Landau models revisited , 2006, hep-th/0612300.
[5] C. Bender,et al. Faster than Hermitian quantum mechanics. , 2006, Physical review letters.
[6] R. Rivers,et al. Path-integral derivation of the anomaly for the Hermitian equivalent of the complex PT-symmetric quartic Hamiltonian , 2006, hep-th/0610245.
[7]
M. Znojil.
On a few new quantization recipes using
[8] H. B. Geyer,et al. The Physics of Non-Hermitian Operators , 2006 .
[9] A. Khare,et al. Periodic potentials and PT symmetry , 2006 .
[10] Z. Ahmed. PT-symmetry in conventional quantum physics , 2006 .
[11] Full time nonexponential decay in double-barrier quantum structures , 2006, quant-ph/0605109.
[12] C. Bender,et al. Equivalence of a Complex PT -Symmetric Quartic Hamiltonian and a Hermitian Quartic Hamiltonian with an Anomaly , 2006, hep-th/0605066.
[13] F. Scholtz,et al. Moyal products -- a new perspective on quasi-hermitian quantum mechanics , 2006, quant-ph/0602187.
[14] Toshiaki Tanaka,et al. Nonlinear pseudo-supersymmetry in the framework of -fold supersymmetry , 2006, quant-ph/0602177.
[15] K. Hibberd,et al. A Bethe ansatz solvable model for superpositions of Cooper pairs and condensed molecular bosons , 2006, nlin/0602032.
[16] C. Bender,et al. Classical trajectories for complex Hamiltonians , 2006, math-ph/0602040.
[17] A. Khare,et al. Complex periodic potentials with a finite number of band gaps , 2006, quant-ph/0602105.
[18] H. Jones,et al. Equivalent Hermitian Hamiltonian for the non-Hermitian -x 4 potential , 2006, quant-ph/0601188.
[19] C. Bender,et al. Calculation of the hidden symmetry operator for a -symmetric square well , 2006, quant-ph/0601123.
[20] G. Uhrig,et al. Hard-core magnons in the S=1/2 Heisenberg model on the square lattice , 2005, cond-mat/0512244.
[21] H. B. Geyer,et al. Operator equations and Moyal products–metrics in quasi-Hermitian quantum mechanics , 2005, quant-ph/0512055.
[22] F. Wegner. Flow equations and normal ordering: a survey , 2005, cond-mat/0511660.
[23] C. Bender,et al. Semiclassical analysis of a complex quartic Hamiltonian , 2005, quant-ph/0509034.
[24] S. Weigert. An algorithmic test for diagonalizability of finite-dimensional PT-invariant systems , 2005, quant-ph/0506042.
[25] C. Bender,et al. symmetric versus Hermitian formulations of quantum mechanics , 2005, hep-th/0511229.
[26] J. M. Arias,et al. Continuous unitary transformations in two-level boson systems , 2005, cond-mat/0509721.
[27] C. Bender,et al. Dual PT-symmetric quantum field theories , 2005, hep-th/0508105.
[28] R. Roychoudhury,et al. LETTER TO THE EDITOR: Pseudo-Hermiticity and some consequences of a generalized quantum condition , 2005, quant-ph/0508073.
[29] J. Moffat. Charge conjugation invariance of the vacuum and the cosmological constant problem [rapid communication] , 2005, hep-th/0507020.
[30] A. Khare,et al. PT-Invariant Periodic Potentials with a Finite Number of Band Gaps , 2005, math-ph/0505027.
[31] B. Samsonov. LETTER TO THE EDITOR: SUSY transformations between diagonalizable and non-diagonalizable Hamiltonians , 2005, quant-ph/0503075.
[32] G. Horowitz,et al. Holographic description of AdS cosmologies , 2005, hep-th/0503071.
[33] M. Znojil,et al. MHD α2-dynamo, Squire equation and PT-symmetric interpolation between square well and harmonic oscillator , 2005, math-ph/0501069.
[34] C. Bender,et al. PT-symmetric quantum electrodynamics , 2005, hep-th/0501180.
[35] S. Dusuel,et al. Finite-size scaling exponents and entanglement in the two-level BCS model , 2005, cond-mat/0501282.
[36] C. Bender,et al. New quasi-exactly solvable sextic polynomial potentials , 2005, quant-ph/0501053.
[37] C. Bender. Introduction to 𝒫𝒯-symmetric quantum theory , 2005, quant-ph/0501052.
[38] C. Bender,et al. The C operator in PT-symmetric quantum field theory transforms as a lorentz scalar , 2004, hep-th/0412316.
[39] S. Dusuel,et al. Continuous unitary transformations and finite-size scaling exponents in the Lipkin-Meshkov-Glick model , 2004, cond-mat/0412127.
[40] H. Jones. On pseudo-Hermitian Hamiltonians and their Hermitian counterparts , 2004, quant-ph/0411171.
[41] C. Bender,et al. Ghost Busting: PT-Symmetric Interpretation of the Lee Model , 2004, hep-th/0411064.
[42] R. Tateo,et al. Beyond the WKB approximation in PT-symmetric quantum mechanics , 2004, hep-th/0410013.
[43] S. Matsumoto,et al. Nonexponential decay of an unstable quantum system: Small-Q-value s-wave decay , 2004, quant-ph/0408149.
[44] M. Znojil,et al. Construction of PT-asymmetric non-Hermitian Hamiltonians with CPT symmetry , 2004, math-ph/0406031.
[45] K. Shin. The potential (iz)m generates real eigenvalues only, under symmetric rapid decay boundary conditions , 2002, hep-ph/0207251.
[46] Anton Zettl,et al. Sturm-Liouville theory , 2005 .
[47] H. B. Geyer,et al. CPT - conserving Hamiltonians and their nonlinear supersymmetrization using differential charge-operators C , 2004, hep-th/0412211.
[48] Carl M. Bender,et al. The Script C operator in Script PScript T-symmetric quantum theories , 2004 .
[49] M. Znojil. Solvable PT-symmetric model with a tunable interspersion of nonmerging levels , 2004, quant-ph/0410196.
[50] A. Mostafazadeh. Pseudo-Hermitian description of PT-symmetric systems defined on a complex contour , 2004, quant-ph/0410012.
[51] A. Mostafazadeh,et al. Physical aspects of pseudo-Hermitian and PT-symmetric quantum mechanics , 2004, quant-ph/0408132.
[52] A. Carlo,et al. Atomistic theory of transport in organic and inorganic nanostructures , 2004 .
[53] K. Shin. Eigenvalues of PT-symmetric oscillators with polynomial potentials , 2004, math/0407018.
[54] C. Bender,et al. Semiclassical calculation of the C operator in PT -symmetric quantum mechanics , 2004, hep-th/0405113.
[55] S. Dusuel,et al. The quartic oscillator: a non-perturbative study by continuous unitary transformations , 2004, cond-mat/0405166.
[56] Gerhard Klimeck,et al. The discretized Schrödinger equation and simple models for semiconductor quantum wells , 2004 .
[57] A. Nanayakkara. Classical trajectories of 1D complex non-Hermitian Hamiltonian systems , 2004 .
[58] K. Shin. On the shape of spectra for non-self-adjoint periodic Schrödinger operators , 2004, math-ph/0404015.
[59] C. Bender,et al. Erratum: Complex Extension of Quantum Mechanics [Phys. Rev. Lett.89, 270401 (2002)] , 2004 .
[60] C. Bender,et al. Extension of PT -Symmetric Quantum Mechanics to Quantum Field Theory with Cubic Interaction , 2004, hep-th/0402183.
[61] A. Khare,et al. Analytically solvable PT-invariant periodic potentials , 2004, quant-ph/0402106.
[62] C. Bender,et al. Scalar quantum field theory with a complex cubic interaction. , 2004, Physical review letters.
[63] Mark S. Swanson,et al. Transition elements for a non-Hermitian quadratic Hamiltonian , 2004 .
[64] P. Roy,et al. PT symmetry of a conditionally exactly solvable potential , 2004, quant-ph/0401064.
[65] P. Roy,et al. New exactly solvable isospectral partners for symmetric potentials , 2003, quant-ph/0312085.
[66] G. Scolarici,et al. Pseudo-Hermitian Hamiltonians, indefinite inner product spaces and their symmetries , 2003, quant-ph/0310106.
[67] R. Tateo,et al. A Reality Proof in PT-Symmetric Quantum Mechanics , 2003, hep-th/0309209.
[68] G. Uhrig,et al. Spectral properties of the dimerized and frustrated $S=1/2$ chain , 2003, cond-mat/0307678.
[69] A. Nanayakkara. Classical Motion of Complex 2-D Non-Hermitian Hamiltonian Systems , 2004 .
[70] R. Tateo,et al. DIFFERENTIAL EQUATIONS AND THE BETHE ANSATZ , 2003, hep-th/0309054.
[71] Z. Ahmed. Pseudo-reality and pseudo-adjointness of Hamiltonians , 2003, quant-ph/0306093.
[72] G. Uhrig,et al. The structure of operators in effective particle-conserving models , 2003, cond-mat/0306333.
[73] S. Weigert. Completeness and Orthonormality in PT -symmetric Quantum Systems , 2003, quant-ph/0306040.
[74] A. Mostafazadeh. Exact PT-symmetry is equivalent to Hermiticity , 2003, quant-ph/0304080.
[75] P. Vogl,et al. Efficient method for the calculation of ballistic quantum transport , 2003 .
[76] Z. Ahmed,et al. Gaussian ensemble of 2 × 2 pseudo-Hermitian random matrices , 2003 .
[77] Dorje C. Brody,et al. Must a Hamiltonian be Hermitian , 2003, hep-th/0303005.
[78] Z. Ahmed. An ensemble of non-Hermitian Gaussian-random 2×2 matrices admitting the Wigner surmise , 2003 .
[79] Z. Ahmed. C-, PT- and CPT-invariance of pseudo-Hermitian Hamiltonians , 2003, quant-ph/0302141.
[80] C. Handy,et al. Moment problem quantization within a generalized scalet-Wigner (auto-scaling) transform representation , 2003 .
[81] Z. Ahmed. P-, T-, PT-, and CPT-invariance of Hermitian Hamiltonians , 2003, quant-ph/0302084.
[82] A. Mostafazadeh. Erratum: Pseudo-Hermiticity for a class of nondiagonalizable Hamiltonians [J. Math. Phys. 43, 6343 (2002); math-ph/0207009] , 2003, math-ph/0301030.
[83] Z. Ahmed,et al. Pseudounitary symmetry and the Gaussian pseudounitary ensemble of random matrices. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[84] A. Carlo. TOPICAL REVIEW: Microscopic theory of nanostructured semiconductor devices: beyond the envelope-function approximation , 2003 .
[85] C. Knetter. Perturbative Continuous Unitary Transformations: Spectral Properties of Low Dimensional Spin Systems , 2003 .
[86] C. Bender,et al. Calculation of the hidden symmetry operator in -symmetric quantum mechanics , 2002, quant-ph/0211166.
[87] A. Mostafazadeh. Pseudo-Hermiticity and Generalized PT- and CPT-Symmetries , 2002, math-ph/0209018.
[88] G. Uhrig,et al. Renormalization by continuous unitary transformations: one-dimensional spinless fermions , 2002, cond-mat/0208446.
[89] C. Bender,et al. Complex extension of quantum mechanics. , 2002, Physical review letters.
[90] M. Berry,et al. Generalized PT symmetry and real spectra , 2002 .
[91] A. Mostafazadeh. Pseudo-Hermiticity for a class of nondiagonalizable Hamiltonians , 2002, math-ph/0207009.
[92] B. Bagchi,et al. Pseudo-Hermiticity, weak pseudo-Hermiticity and η-orthogonality condition , 2002, quant-ph/0206055.
[93] A. Ventura,et al. PT symmetry breaking and explicit expressions for the pseudo-norm in the Scarf II potential , 2002, quant-ph/0206032.
[94] B. Bagchi,et al. PT-SYMMETRIC SQUARE WELL AND THE ASSOCIATED SUSY HIERARCHIES , 2002, quant-ph/0205003.
[95] L. Solombrino. Weak pseudo-Hermiticity and antilinear commutant , 2002, quant-ph/0203101.
[96] V. Barsegov,et al. Quantum decoherence, Zeno process, and time symmetry breaking. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[97] Z. Ahmed. Pseudo-Hermiticity of Hamiltonians under gauge-like transformation: real spectrum of non-Hermitian Hamiltonians , 2002 .
[98] A. Mostafazadeh. Pseudo-Hermiticity versus PT-symmetry III: Equivalence of pseudo-Hermiticity and the presence of antilinear symmetries , 2002, math-ph/0203005.
[99] B. Bagchi,et al. PT symmetric nonpolynomial oscillators and hyperbolic potential with two known real eigenvalues in a SUSY framework , 2002, quant-ph/0201063.
[100] K. Shin,et al. On the Reality of the Eigenvalues for a Class of -Symmetric Oscillators , 2002, math-ph/0201013.
[101] R. Bousso,et al. Conformal vacua and entropy in de Sitter space , 2001, hep-th/0112218.
[102] G. Uhrig,et al. Landau's quasiparticle mapping: Fermi liquid approach and Luttinger liquid behavior. , 2001, Physical review letters.
[103] B. Bagchi,et al. Complexified PSUSY and SSUSY interpretations of some PT symmetric Hamiltonians possessing two series of real energy eigenvalues , 2001, quant-ph/0106021.
[104] Extension of a spectral bounding method to the PT-invariant states of the −(iX)N non-Hermitian potential , 2001 .
[105] A. Mostafazadeh. Pseudo-Hermiticity versus PT-symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a real spectrum , 2001, math-ph/0110016.
[106] M. Znojil,et al. Conditions for complex spectra in a class of PT symmetric potentials , 2001, quant-ph/0110064.
[107] M. Znojil,et al. Generalized continuity equation and modified normalization in PT-symmetric quantum mechanics , 2001, quant-ph/0108096.
[108] C. Bender,et al. Bound States of Non-Hermitian Quantum Field Theories , 2001, hep-th/0108057.
[109] A. Mostafazadeh. Pseudo-Hermiticity versus PT symmetry: The necessary condition for the reality of the spectrum of a non-Hermitian Hamiltonian , 2001, math-ph/0107001.
[110] Gerhard Klimeck,et al. Electromagnetic coupling and gauge invariance in the empirical tight-binding method , 2001 .
[111] Quantum transitions and dressed unstable states , 2001 .
[112] C. Handy. Generating converging bounds to the (complex) discrete states of the P2 + iX3 + iαX Hamiltonian , 2001, math-ph/0104036.
[113] C. Bender,et al. Comment on a recent paper by Mezincescu , 2001 .
[114] G. Japaridze. Space of state vectors in -symmetric quantum mechanics , 2001 .
[115] M. Znojil. Conservation of pseudo-norm in PT symmetric quantum mechanics , 2001, math-ph/0104012.
[116] R. Tateo,et al. Bethe Ansatz equations , and reality properties in PT-symmetric quantum mechanics , 2022 .
[117] B. Bagchi,et al. Generating complex potentials with real eigenvalues in supersymmetric quantum mechanics , 2001, quant-ph/0102093.
[118] Wen-Wei Lin,et al. Eigenvalue Problems for One-Dimensional Discrete Schrödinger Operators with Symmetric Boundary Conditions , 2001, SIAM J. Matrix Anal. Appl..
[119] S. Y. Lou,et al. Revisitation of the localized excitations of the (2+1)-dimensional KdV equation , 2001 .
[120] C. Bender,et al. Calculation of the one point Green's function for a g phi 4 quantum field theory , 2001 .
[121] M. Znojil. PT-symmetrized supersymmetric quantum mechanics , 2001, hep-ph/0101038.
[122] K. Shin. On the eigenproblems of PT-symmetric oscillators , 2000, math-ph/0007006.
[123] Eric Delabaere,et al. Spectral analysis of the complex cubic oscillator , 2000 .
[124] P. Vogl,et al. Model of room-temperature resonant-tunneling current in metal'insulator and insulator'insulator heterostructures , 2000 .
[125] C. Bender,et al. Conjecture on the interlacing of zeros in complex Sturm-Liouville problems , 2000, math-ph/0005012.
[126] A. Garg. Tunnel splittings for one-dimensional potential wells revisited , 2000, cond-mat/0003115.
[127] G. Mezincescu. Some properties of eigenvalues and eigenfunctions of the cubic oscillator with imaginary coupling constant , 2000, quant-ph/0002056.
[128] C. Bender,et al. Solution of Schwinger-Dyson equations for PT symmetric quantum field theory , 1999, hep-th/9907045.
[129] G. Uhrig,et al. Perturbation theory by flow equations: dimerized and frustrated S = 1/2 chain , 1999, cond-mat/9906243.
[130] C. Bender,et al. Complex square well - a new exactly solvable quantum mechanical model , 1999, quant-ph/9906057.
[131] C. Bender,et al. A nonunitary version of massless quantum electrodynamics possessing a critical point , 1999 .
[132] A. Voros. Exact resolution method for general 1D polynomial Schrödinger equation , 1999, math-ph/9902016.
[133] F. Fernández,et al. A FAMILY OF COMPLEX POTENTIALS WITH REAL SPECTRUM , 1998, quant-ph/9812026.
[134] C. Bender,et al. PT-symmetric quantum mechanics , 1998, 2312.17386.
[135] Orsay,et al. SUSY Quantum Mechanics with Complex Superpotentials and Real Energy Spectra , 1998, quant-ph/9806019.
[136] Éric Delabaere,et al. Eigenvalues of complex Hamiltonians with PT-symmetry. II , 1998 .
[137] L. Chebotarev. Extensions of the Bohr–Sommerfeld formula to double-well potentials , 1998 .
[138] Hiroki Nakamura,et al. Siegert pseudostate formulation of scattering theory: Two-channel case , 1998 .
[139] F. Cannata,et al. Schrodinger operators with complex potential but real spectrum , 1998, quant-ph/9805085.
[140] M. Berry,et al. Diffraction by volume gratings with imaginary potentials , 1998 .
[141] C. Bender,et al. Real Spectra in Non-Hermitian Hamiltonians Having PT Symmetry , 1997, physics/9712001.
[142] C. Bender,et al. Model of supersymmetric quantum field theory with broken parity symmetry , 1997, hep-th/9710076.
[143] J. Stein,et al. Flow equations and the strong-coupling expansion for the Hubbard model , 1997 .
[144] N. Hatano,et al. Vortex pinning and non-Hermitian quantum mechanics , 1997, cond-mat/9705290.
[145] C. Bender,et al. Semiclassical analysis of quasiexact solvability , 1996, hep-th/9609193.
[146] Boykin,et al. Generalized eigenproblem method for surface and interface states: The complex bands of GaAs and AlAs. , 1996, Physical review. B, Condensed matter.
[147] T. Berggren. Expectation value of an operator in a resonant state , 1996 .
[148] P. Lenz,et al. Flow equations for electron-phonon interactions , 1996, cond-mat/9604087.
[149] I. Prigogine,et al. Poincaré resonances and the extension of classical dynamics , 1996 .
[150] Nelson,et al. Localization Transitions in Non-Hermitian Quantum Mechanics. , 1996, Physical review letters.
[151] S. Datta. Electronic transport in mesoscopic systems , 1995 .
[152] C. Bender,et al. Quasi‐exactly solvable systems and orthogonal polynomials , 1995, hep-th/9511138.
[153] P. Neu,et al. Flow equations for the spin-boson problem , 1995 .
[154] A. Ushveridze. Quasi-Exactly Solvable Models in Quantum Mechanics , 1994 .
[155] V. Buslaev,et al. Equivalence of unstable anharmonic oscillators and double wells , 1993 .
[156] Darryl D. Holm,et al. An integrable shallow water equation with peaked solitons. , 1993, Physical review letters.
[157] C. Bender,et al. Analytic continuation of eigenvalue problems , 1993 .
[158] T. Hollowood. Solitons in affine Toda field theories , 1991, hep-th/9110010.
[159] F. Scholtz,et al. Quasi-Hermitian operators in quantum mechanics and the variational principle , 1992 .
[160] K. Rothe,et al. Non-perturbative methods in 2 dimensional quantum field theory , 1991 .
[161] R. Brockett. Dynamical systems that sort lists, diagonalize matrices, and solve linear programming problems , 1991 .
[162] A. Zamolodchikov. Two-point correlation function in scaling Lee-Yang model , 1991 .
[163] F. Haake. Quantum signatures of chaos , 1991 .
[164] Aharonov,et al. Geometry of quantum evolution. , 1990, Physical review letters.
[165] Dunne,et al. Integration of operator differential equations. , 1989, Physical review. D, Particles and fields.
[166] Dunne,et al. Exact solutions to operator differential equations. , 1989, Physical review. D, Particles and fields.
[167] J. Cardy,et al. S Matrix of the Yang-Lee Edge Singularity in Two-Dimensions , 1989 .
[168] C. Bender,et al. A new perturbative approach to nonlinear problems , 1989 .
[169] J. J. Sakurai,et al. Modern Quantum Mechanics , 1986 .
[170] J. Cardy,et al. Conformal invariance and the Yang-Lee edge singularity in two dimensions. , 1985, Physical review letters.
[171] N. David Mermin,et al. Is the Moon There When Nobody Looks? Reality and the Quantum Theory , 1985 .
[172] F. R. Gantmakher. The Theory of Matrices , 1984 .
[173] P. Vogl,et al. A Semi-empirical tight-binding theory of the electronic structure of semiconductors†☆ , 1983 .
[174] T. Berggren. Completeness relations, Mittag-Leffler expansions and the perturbation theory of resonant states , 1982 .
[175] A. Andrianov. The large N expansion as a local perturbation theory , 1982 .
[176] J. Leray. Lagrangian analysis and quantum mechanics : a mathematical structure related to asymptotic expansions and the Maslov index , 1981 .
[177] E. Caliceti,et al. Perturbation theory of odd anharmonic oscillators , 1980 .
[178] B. Harms,et al. New structure in the energy spectrum of reggeon quantum mechanics with quartic couplings , 1980 .
[179] W. Romo. A study of the completeness properties of resonant states , 1980 .
[180] B. Harms,et al. Complex energy spectra in reggeon quantum mechanics with quartic interactions , 1980 .
[181] Michael E. Fisher,et al. Yang-Lee Edge Singularity and ϕ 3 Field Theory , 1978 .
[182] Richard C. Brower,et al. Critical Exponents for the Reggeon Quantum Spin Model , 1978 .
[183] E. Sudarshan,et al. Zeno's paradox in quantum theory , 1976 .
[184] G. G. Calderón. An expansion of continuum wave functions in terms of resonant states , 1976 .
[185] L. Schiff,et al. Quantum Mechanics, 3rd ed. , 1973 .
[186] K. Symanzik. Small-distance-behaviour analysis and Wilson expansions , 1971 .
[187] R. More. THEORY OF DECAYING STATES. , 1971 .
[188] K. Symanzik. Small-distance behaviour in field theory , 1971 .
[189] T. Berggren. On a probabilistic interpretation of expansion coefficients in the non-relativistic quantum theory of resonant states , 1970 .
[190] T. D. Lee,et al. Negative Metric and the Unitarity of the S Matrix , 1969 .
[191] W. Romo. Inner product for resonant states and shell-model applications , 1968 .
[192] Tai Tsun Wu,et al. Analytic Structure of Energy Levels in a Field-Theory Model , 1968 .
[193] P. Goldbart,et al. Linear differential operators , 1967 .
[194] N. Hokkyo. A Remark on the Norm of the Unstable State : A Role of Adjoint Wave Functions in Non-Self-Adjoint Quantum Systems , 1965 .
[195] H. Lipkin,et al. Validity of many-body approximation methods for a solvable model: (I). Exact solutions and perturbation theory , 1965 .
[196] A. Wightman,et al. PCT, spin and statistics, and all that , 1964 .
[197] G. Barton. Introduction to Advanced Field Theory , 1963 .
[198] Silvan S. Schweber,et al. An Introduction to Relativistic Quantum Field Theory , 1962 .
[199] A. Messiah. Quantum Mechanics , 1961 .
[200] R. Newton. Analytic Properties of Radial Wave Functions , 1960 .
[201] N. N. Bogoliubov,et al. Introduction to the theory of quantized fields , 1960 .
[202] T. Wu. Ground State of a Bose System of Hard Spheres , 1959 .
[203] E. M. Lifshitz,et al. Quantum mechanics: Non-relativistic theory, , 1959 .
[204] R. Landauer,et al. Spatial variation of currents and fields due to localized scatterers in metallic conduction , 1988, IBM J. Res. Dev..
[205] L. Spitzer. Physics of fully ionized gases , 1956 .
[206] T. D. Lee,et al. Some Special Examples in Renormalizable Field Theory , 1954 .
[207] R. Dicke. Coherence in Spontaneous Radiation Processes , 1954 .
[208] F. Dyson. Divergence of perturbation theory in quantum electrodynamics , 1952 .
[209] K. Bleuler. A NEW METHOD FOR THE TREATMENT OF LONGITUDINAL AND SCALAR PHOTONS , 1950 .
[210] Suraj N. Gupta. Theory of longitudinal photons in quantum electrodynamics , 1950 .
[211] Suraj N. Gupta. On the Calculation of Self-Energy of Particles , 1950 .
[212] J. E. Moyal. Quantum mechanics as a statistical theory , 1949, Mathematical Proceedings of the Cambridge Philosophical Society.
[213] W. Pauli. On Dirac's New Method of Field Quantization , 1943 .
[214] Paul Adrien Maurice Dirac,et al. Bakerian Lecture - The physical interpretation of quantum mechanics , 1942, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[215] T. G. Cowling,et al. The mathematical theory of non-uniform gases , 1939 .
[216] A. Siegert. On the Derivation of the Dispersion Formula for Nuclear Reactions , 1939 .
[217] E. Wigner. On the quantum correction for thermodynamic equilibrium , 1932 .
[218] P. Dirac. Principles of Quantum Mechanics , 1982 .