Marcinkiewicz-Zygmund inequalities in variable Lebesgue spaces

We study $\ell^r$-valued extensions of linear operators defined on Lebesgue spaces with variable exponent. Under some natural (and usual) conditions on the exponents, we characterize $1\leq r\leq \infty$ such that every bounded linear operator $T\colon L^{q(\cdot)}(\Omega_2, \mu)\to L^{p(\cdot)}(\Omega_1, \nu)$ has a bounded $\ell^r$-valued extension. We consider both non-atomic measures and measures with atoms and show the differences that can arise. We present some applications of our results to weighted norm inequalities of linear operators and vector-valued extensions of fractional operators with rough kernel.

[1]  D. Carando,et al.  Multilinear Marcinkiewicz-Zygmund Inequalities , 2016, 1611.08284.

[2]  D. Cruz-Uribe,et al.  Extrapolation and weighted norm inequalities in the variable Lebesgue spaces , 2014, 1408.4499.

[3]  Alberto Fiorenza,et al.  Variable Lebesgue Spaces: Foundations and Harmonic Analysis , 2013 .

[4]  D. Cruz-Uribe,et al.  Weights, Extrapolation and the Theory of Rubio de Francia , 2011 .

[5]  P. Hästö,et al.  Lebesgue and Sobolev Spaces with Variable Exponents , 2011 .

[6]  M. Izuki Vector-valued inequalities on herz spaces and characterizations of herz-sobolev spaces with variable exponent , 2010 .

[7]  Yunmei Chen,et al.  Variable Exponent, Linear Growth Functionals in Image Restoration , 2006, SIAM J. Appl. Math..

[8]  D. Cruz-Uribe,et al.  Extrapolation from A∞ weights and applications , 2004 .

[9]  M. Junge,et al.  Best constants and asymptotics of Marcinkiewicz - Zygmund inequalities , 1997 .

[10]  M. Junge Hyperplane conjecture for quotient spaces of L p , 1993, math/9312207.

[11]  J. Torrea,et al.  VECTOR EXTENSIONS OF OPERATORS IN L p SPACES , 1983 .

[12]  P. Tradacete,et al.  p-REGULARITY AND WEIGHTS FOR OPERATORS BETWEEN L-SPACES , 2019 .

[13]  S. Samko,et al.  On maximal and potential operators with rough kernels in variable exponent spaces , 2016 .

[14]  Jingshi Xu,et al.  GEOMETRIC PROPERTIES OF BANACH SPACE VALUED BOCHNER-LEBESGUE SPACES WITH VARIABLE EXPONENT , 2013 .

[15]  D. Cruz-Uribe,et al.  THE BOUNDEDNESS OF CLASSICAL OPERATORS ON VARIABLE L p SPACES , 2006 .

[16]  Dun Zhao,et al.  On the Spaces L and W , 2001 .

[17]  L. Maligranda,et al.  On Vector‐valued Inequalities of the Marcinkiewicz‐Zygmund, Herz and Krivine Type , 1994 .

[18]  J. García-cuerva Factorization of Operators and Weighted Norm Inequalities , 1990 .

[19]  J. García-cuerva,et al.  Weighted norm inequalities and related topics , 1985 .

[20]  C. Herz,et al.  Lipschitz Spaces and Bernstein's Theorem on Absolutely Convergent Fourier Transforms* , 1968 .

[21]  中野 秀五郎,et al.  Modulared semi-ordered linear spaces , 1950 .

[22]  J. Marcinkiewicz,et al.  Quelques inégalités pour les opérations linéaires , 1939 .