Secret Sharing with Reusable Polynomials

We present a threshold secret sharing scheme based on polynomial interpolation and the Diffie-Hellman problem. In this scheme shares can be used for the reconstruction of multiple secrets, shareholders can dynamically join or leave without distributing new shares to the existing shareholders, and shares can be individually verified during both share distribution and secret recovery.

[1]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[2]  Hung-Min Sun,et al.  Construction of dynamic threshold schemes , 1994 .

[3]  Jennifer Seberry,et al.  Reusing Shares in Secret Sharing Schemes , 1994, Comput. J..

[4]  Ernest F. Brickell,et al.  The Detection of Cheaters in Threshold Schemes , 1988, CRYPTO.

[5]  R.G.E. Pinch,et al.  On-line multiple secret sharing , 1996 .

[6]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[7]  G. R. Blakley,et al.  Threshold Schemes with Disenrollment , 1992, CRYPTO.

[8]  G. R. BLAKLEY Safeguarding cryptographic keys , 1979, 1979 International Workshop on Managing Requirements Knowledge (MARK).

[9]  Chin-Chen Chang,et al.  A dynamic secret sharing scheme with cheater detection , 1996, ACISP.

[10]  Torben P. Pedersen Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing , 1991, CRYPTO.

[11]  Chi-Sung Laih,et al.  Dynamic Threshold Scheme Based on the Definition of Cross-Product in an N-Dimentional Linear Space , 1989, CRYPTO.

[12]  Christian Cachin On-Line Secret Sharing , 1995, IMACC.

[13]  Hugo Krawczyk,et al.  Secret Sharing Made Short , 1994, CRYPTO.

[14]  Josef Pieprzyk,et al.  Conditionally secure secret sharing schemes with disenrollment capability , 1994, CCS '94.

[15]  Claude E. Shannon,et al.  Communication theory of secrecy systems , 1949, Bell Syst. Tech. J..

[16]  Torben P. Pedersen Distributed Provers with Applications to Undeniable Signatures , 1991, EUROCRYPT.