Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences

Increased reliance on computational approaches in the life sciences has revealed grave concerns about how accessible and reproducible computation-reliant results truly are. Galaxy http://usegalaxy.org, an open web-based platform for genomic research, addresses these problems. Galaxy automatically tracks and manages data provenance and provides support for capturing the context and intent of computational methods. Galaxy Pages are interactive, web-based documents that provide users with a medium to communicate a complete computational analysis.

[1]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[2]  Ralph Johnson,et al.  design patterns elements of reusable object oriented software , 2019 .

[3]  Matthias Schwab,et al.  Making scientific computations reproducible , 2000, Comput. Sci. Eng..

[4]  Jeffrey Chang,et al.  Biopython: Python tools for computational biology , 2000, SIGB.

[5]  I. Longden,et al.  EMBOSS: the European Molecular Biology Open Software Suite. , 2000, Trends in genetics : TIG.

[6]  Rolf Apweiler,et al.  InterProScan - an integration platform for the signature-recognition methods in InterPro , 2001, Bioinform..

[7]  Matthew R. Pocock,et al.  The Bioperl toolkit: Perl modules for the life sciences. , 2002, Genome research.

[8]  Friedrich Leisch,et al.  Sweave: Dynamic Generation of Statistical Reports Using Literate Data Analysis , 2002, COMPSTAT.

[9]  Matthew R. Pocock,et al.  Taverna: a tool for the composition and enactment of bioinformatics workflows , 2004, Bioinform..

[10]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[11]  Robert Gentleman,et al.  Statistical Applications in Genetics and Molecular Biology , 2005 .

[12]  Jakob Nielsen,et al.  Prioritizing Web Usability , 2006 .

[13]  J. Mesirov,et al.  GenePattern 2.0 , 2006, Nature Genetics.

[14]  Daniel J. Blankenberg,et al.  A framework for collaborative analysis of ENCODE data: making large-scale analyses biologist-friendly. , 2007, Genome research.

[15]  Allen D. Delaney,et al.  Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing , 2007, Nature Methods.

[16]  B. Williams,et al.  Mapping and quantifying mammalian transcriptomes by RNA-Seq , 2008, Nature Methods.

[17]  A. Mortazavi,et al.  Computation for ChIP-seq and RNA-seq studies , 2009, Nature Methods.

[18]  Pierre Tufféry,et al.  BIOINFORMATICS ORIGINAL PAPER , 2022 .

[19]  Sergei L. Kosakovsky Pond,et al.  Windshield splatter analysis with the Galaxy metagenomic pipeline. , 2009, Genome research.

[20]  A. Visel,et al.  ChIP-seq accurately predicts tissue-specific activity of enhancers , 2009, Nature.

[21]  C. Ball,et al.  Repeatability of published microarray gene expression analyses , 2009, Nature Genetics.

[22]  Lennart Opitz,et al.  Altered Histone Acetylation Is Associated with Age-Dependent Memory Impairment in Mice , 2010, Science.

[23]  Carole A. Goble,et al.  myExperiment: a repository and social network for the sharing of bioinformatics workflows , 2010, Nucleic Acids Res..

[24]  T. Vision Open Data and the Social Contract of Scientific Publishing , 2010 .

[25]  Yuichi Sugiyama,et al.  Genome-wide analysis of epigenetic signatures for kidney-specific transporters. , 2010, Kidney international.

[26]  Karen L. Mohlke,et al.  A map of open chromatin in human pancreatic islets , 2010, Nature Genetics.

[27]  Daniel J. Blankenberg,et al.  Galaxy: A Web‐Based Genome Analysis Tool for Experimentalists , 2010, Current protocols in molecular biology.

[28]  Jill P Mesirov,et al.  Accessible Reproducible Research , 2010, Science.

[29]  Daniel J. Blankenberg,et al.  Using Galaxy to Perform Large‐Scale Interactive Data Analyses , 2012, Current protocols in bioinformatics.