Review of thermally regenerative electrochemical systems
暂无分享,去创建一个
[1] S. M. Zivi,et al. Battery engineering problems in designing an electrical load leveling plant for lithium/iron-sulfide cells , 1979 .
[2] Neill Weber,et al. A thermoelectric device based on beta-alumina solid electrolyte , 1974 .
[3] Scott E. Wood,et al. STUDIES OF LITHIUM HYDRIDE SYSTEMS. III. SOLID-LIQUID EQUILIBRIUM IN THE LITHIUM BROMIDE-LITHIUM HYDRIDE AND LITHIUM IODIDE-LITHIUM HYDRIDE SYSTEMS , 1966 .
[4] David S. Newman,et al. Solid Electrolytes General Principles, Charecterization, Materials, Applications , 1980 .
[5] William M. Risen,et al. An electrochemical heat engine for direct solar energy conversion , 1979 .
[6] Robert R. Heinrich,et al. Hydrogen Permeation Studies II . Vanadium as a Hydrogen Electrode in a Lithium Hydride Cell , 1965 .
[7] Robert R. Heinrich,et al. Hydrogen Permeation Studies I . Armco Iron and Iron‐Molybdenum Alloys , 1965 .
[8] W. E. Brown,et al. Electrode Kinetics for Chlorides of Tungsten, Antimony, and Phosphorus , 1963 .
[9] D. H. Archer,et al. Thermoelectric Effects in Fused Ionic Materials , 1963 .
[10] Maria Telkes,et al. Solar Thermoelectric Generators , 1954 .
[11] Ambrose R. Nichols,et al. Entropy of the Moving Cuprous Ion in Molten Cuprous Chloride from Thermogalvanic Potentials , 1960 .
[12] T. K. Hunt,et al. Research on the sodium heat engine , 1978 .
[13] C. E. Johnson,et al. New measurements for the sodium-bismuth phase diagram☆ , 1970 .
[14] B. Burrows,et al. Discharge Behavior of Redox Thermogalvanic Cells , 1976 .
[15] S. D. Groot,et al. Thermodynamics of Irreversible Processes , 2018, Principles of Thermodynamics.
[16] S Skinner,et al. The Tin-Chromic Chloride Cell , 2022 .
[17] J. Richter,et al. Evaluation of Measurements on Thermocells Containing Molten Salt Mixtures , 1977 .
[18] Wayne E. Wentworth,et al. Simple thermal decomposition reactions for storage of solar thermal energy , 1975 .
[19] Scott E. Wood,et al. Studies of Lithium Hydride Systems. I. Solid-Liquid Equilibrium in the Lithium Chloride-Lithium Hydride System , 1964 .
[20] H. Hoshino,et al. Thermoelectric power of ionic crystals—I general theory , 1967 .
[21] B. Agruss,et al. The Thermally Regenerative Liquid‐Metal Cell , 1963 .
[22] L. E. Topol,et al. Magnetic Susceptibilities of Molten Bi–BiI3 Solutions , 1963 .
[23] J. L. Weininger,et al. Halogen‐Activated Solid Electrolyte Cell , 1958 .
[24] Scott E. Wood,et al. Studies of Lithium Hydride Systems. II. Solid—Liquid Equilibrium in the Sodium Chloride—Lithium Hydride System , 1966 .
[25] Carl Edgar Johnson,et al. Lithium hydride systems: solid-liquid phase equilibria for the ternary lithium hydride-lithium chloride-lithium iodide system , 1966 .
[26] Benson R. Sundheim,et al. MOLTEN SALT THERMOCELLS , 1959 .
[27] G. D. Ulrich,et al. Development of a Thermally Regenerative Sodium-Mercury Galvanic System: Part I. Electrochemical and Chemical Behavior of Sodium-Mercury Galvanic Cells1 , 1967 .
[28] Herman A. Liebhafsky. Regenerative Electrochemical Systems: An Introduction , 1967 .
[29] Gaetano Chiodelli,et al. Thermoelectric power of AgI-Ag oxysalt ionic solids , 1978 .
[30] Robert D Weaver,et al. The Sodium|Tin Liquid‐Metal Cell , 1962 .
[31] Maurice Abraham,et al. Thermopiles à nitrates fondus: évolution du pouvoir thermoélectrique initial lors de la transition liquide-verre , 1971 .
[32] Eijiro Haga,et al. Theory of Thermoelectric Power of Ionic Crystals, II , 1959 .