Review of thermally regenerative electrochemical systems

Thermally regenerative electrochemical systems (TRES) are closed systems that convert heat into electricity in an electrochemical heat engine that is Carnot cycle limited in efficiency. In this report, past and present work on TRES is reviewed and classified. Two broad classes of TRES can be identified according to the type of energy input required to regenerate the electrochemical cell reactants: thermal input alone or the coupling of thermal and electrolytic energy inputs. To facilitate the discussion, these two broad categories are further divided into seven types of TRES (Types 1 to 3 for thermal regeneration; Types 4 to 7 for coupled thermal and electrolytic regeneration). The subdivision was made according to significant differences in either the electrochemical cells or in the regenerators.

[1]  S. M. Zivi,et al.  Battery engineering problems in designing an electrical load leveling plant for lithium/iron-sulfide cells , 1979 .

[2]  Neill Weber,et al.  A thermoelectric device based on beta-alumina solid electrolyte , 1974 .

[3]  Scott E. Wood,et al.  STUDIES OF LITHIUM HYDRIDE SYSTEMS. III. SOLID-LIQUID EQUILIBRIUM IN THE LITHIUM BROMIDE-LITHIUM HYDRIDE AND LITHIUM IODIDE-LITHIUM HYDRIDE SYSTEMS , 1966 .

[4]  David S. Newman,et al.  Solid Electrolytes General Principles, Charecterization, Materials, Applications , 1980 .

[5]  William M. Risen,et al.  An electrochemical heat engine for direct solar energy conversion , 1979 .

[6]  Robert R. Heinrich,et al.  Hydrogen Permeation Studies II . Vanadium as a Hydrogen Electrode in a Lithium Hydride Cell , 1965 .

[7]  Robert R. Heinrich,et al.  Hydrogen Permeation Studies I . Armco Iron and Iron‐Molybdenum Alloys , 1965 .

[8]  W. E. Brown,et al.  Electrode Kinetics for Chlorides of Tungsten, Antimony, and Phosphorus , 1963 .

[9]  D. H. Archer,et al.  Thermoelectric Effects in Fused Ionic Materials , 1963 .

[10]  Maria Telkes,et al.  Solar Thermoelectric Generators , 1954 .

[11]  Ambrose R. Nichols,et al.  Entropy of the Moving Cuprous Ion in Molten Cuprous Chloride from Thermogalvanic Potentials , 1960 .

[12]  T. K. Hunt,et al.  Research on the sodium heat engine , 1978 .

[13]  C. E. Johnson,et al.  New measurements for the sodium-bismuth phase diagram☆ , 1970 .

[14]  B. Burrows,et al.  Discharge Behavior of Redox Thermogalvanic Cells , 1976 .

[15]  S. D. Groot,et al.  Thermodynamics of Irreversible Processes , 2018, Principles of Thermodynamics.

[16]  S Skinner,et al.  The Tin-Chromic Chloride Cell , 2022 .

[17]  J. Richter,et al.  Evaluation of Measurements on Thermocells Containing Molten Salt Mixtures , 1977 .

[18]  Wayne E. Wentworth,et al.  Simple thermal decomposition reactions for storage of solar thermal energy , 1975 .

[19]  Scott E. Wood,et al.  Studies of Lithium Hydride Systems. I. Solid-Liquid Equilibrium in the Lithium Chloride-Lithium Hydride System , 1964 .

[20]  H. Hoshino,et al.  Thermoelectric power of ionic crystals—I general theory , 1967 .

[21]  B. Agruss,et al.  The Thermally Regenerative Liquid‐Metal Cell , 1963 .

[22]  L. E. Topol,et al.  Magnetic Susceptibilities of Molten Bi–BiI3 Solutions , 1963 .

[23]  J. L. Weininger,et al.  Halogen‐Activated Solid Electrolyte Cell , 1958 .

[24]  Scott E. Wood,et al.  Studies of Lithium Hydride Systems. II. Solid—Liquid Equilibrium in the Sodium Chloride—Lithium Hydride System , 1966 .

[25]  Carl Edgar Johnson,et al.  Lithium hydride systems: solid-liquid phase equilibria for the ternary lithium hydride-lithium chloride-lithium iodide system , 1966 .

[26]  Benson R. Sundheim,et al.  MOLTEN SALT THERMOCELLS , 1959 .

[27]  G. D. Ulrich,et al.  Development of a Thermally Regenerative Sodium-Mercury Galvanic System: Part I. Electrochemical and Chemical Behavior of Sodium-Mercury Galvanic Cells1 , 1967 .

[28]  Herman A. Liebhafsky Regenerative Electrochemical Systems: An Introduction , 1967 .

[29]  Gaetano Chiodelli,et al.  Thermoelectric power of AgI-Ag oxysalt ionic solids , 1978 .

[30]  Robert D Weaver,et al.  The Sodium|Tin Liquid‐Metal Cell , 1962 .

[31]  Maurice Abraham,et al.  Thermopiles à nitrates fondus: évolution du pouvoir thermoélectrique initial lors de la transition liquide-verre , 1971 .

[32]  Eijiro Haga,et al.  Theory of Thermoelectric Power of Ionic Crystals, II , 1959 .