A minimal set-valued strong derivative for vector-valued Lipschitz functions

A set-valued derivative for a function at a point is a set of linear transformations whichapproximates the function near the point. This is stated precisely, and it is shown that, in general, there is not a unique minimal set-valued derivative for functions in the family of closed convex sets of linear transformations. For Lipschitz functions, a construction is given for a specific set-valued derivative, which reduces to the usual derivative when the function is strongly differentiable, and which is shown to be the unique minimal set-valued derivative within a certain subfamily of the family of closed convex sets of linear transformations. It is shown that this constructed set may be larger than Clarke's and Pourciau's set-valued derivatives, but that no irregularity is introduced.