Optical observations of the growth and day‐to‐day variability of equatorial plasma bubbles

[1] A new narrow-field ionospheric imaging system, the Portable Ionospheric Camera and Small-Scale Observatory, has been installed at the Cerro Tololo Inter-American Observatory near La Serena, Chile (geographic 30.17°S, 289.19°E; geomagnetic 16.72°S, 0.42°E). We present observations of the naturally occurring nightglow emission at 630.0 nm on three consecutive nights demonstrating the day-to-day variability in the occurrence of equatorial plasma bubbles or depletions. On two nights, large-scale undulations with a wavelength on the order of 300–600 km are observed in the emission regions magnetically connected to the bottomside of the equatorial F layer. We demonstrate that at each crest of these large-scale waves, zero, one, or multiple depletions may grow. Thus, the presence of a large-scale wave on the bottomside alone is not sufficient for irregularity growth. This variability is presumably due to the presence, or lack, of small-scale seed waves or some other mechanism needed to increase the instability growth rate past the critical threshold.

[1]  David L. Hysell,et al.  Equatorial spread-F initiation: Post-sunset vortex, thermospheric winds, gravity waves , 2007 .

[2]  W. J. Burke,et al.  A climatology of equatorial plasma bubbles from DMSP 1989–2004 , 2006 .

[3]  Jonathan J. Makela,et al.  A review of imaging low-latitude ionospheric irregularity processes , 2006 .

[4]  David L. Hysell,et al.  Rocket and radar investigation of background electrodynamics and bottom-type scattering layers at the onset of equatorial spread F , 2006 .

[5]  T. Yokoyama,et al.  Upwelling backscatter plumes in growth phase of equatorial spread F observed with the Equatorial Atmosphere Radar , 2006 .

[6]  Douglas L. Jones,et al.  Asymptotically optimal blind estimation of multichannel images , 2006, IEEE Transactions on Image Processing.

[7]  J. Makela,et al.  Simultaneous observations of convective ionospheric storms: ROCSAT‐1 and ground‐based imagers , 2005 .

[8]  Brent M. Ledvina,et al.  First observations of SBAS/WAAS scintillations: Using collocated scintillation measurements and all‐sky images to study equatorial plasma bubbles , 2005 .

[9]  R. Tsunoda On the enigma of day‐to‐day variability in equatorial spread F , 2005 .

[10]  S. Vadas,et al.  Thermospheric responses to gravity waves arising from mesoscale convective complexes , 2004 .

[11]  J. Makela,et al.  Field‐aligned 777.4‐nm composite airglow images of equatorial plasma depletions , 2003 .

[12]  D. Drob,et al.  Nrlmsise-00 Empirical Model of the Atmosphere: Statistical Comparisons and Scientific Issues , 2002 .

[13]  Brent M. Ledvina,et al.  Observations of equatorial spread‐F from Haleakala, Hawaii , 2002 .

[14]  Bodo W. Reinisch,et al.  International Reference Ionosphere 2000 , 2001 .

[15]  M. Taylor,et al.  Two-dimensional spectral analysis of mesospheric airglow image data. , 1997, Applied optics.

[16]  R. Woodman,et al.  Seeding and layering of equatorial spread F by gravity waves , 1990 .

[17]  Michael C. Kelley,et al.  The earth's ionosphere , 1989 .

[18]  Michael C. Kelley,et al.  The Earth's Ionosphere : Plasma Physics and Electrodynamics , 1989 .

[19]  L. Cogger,et al.  A reexamination of the O I 6300-Å nightglow , 1988 .

[20]  B. Tinsley Field aligned airglow observations of transequatorial bubbles in the tropical F-region , 1982 .

[21]  R. Tsunoda,et al.  On the generation and growth of equatorial backscatter plumes 1. Wave structure in the bottomside F layer , 1981 .

[22]  J. Owen,et al.  ALTAIR: an incoherent scatter radar for equatorial spread-F studies. Topical report 1 June 1977-1 January 1978 , 1979 .

[23]  J. Röttger Wave-like structures of large-scale equatorial spread-F irregularities , 1973 .