Relevance Vector Machines for Enhanced BER Probability in DMT-Based Systems

A new channel estimation method for discrete multitone (DMT) communication system based on sparse Bayesian learning relevance vector machine (RVM) method is presented. The Bayesian frame work is used to obtain sparse solutions for regression tasks with linear models. By exploiting a probabilistic Bayesian learning framework, sparse Bayesian learning provides accurate models for estimation and consequently equalization. We consider frequency domain equalization (FEQ) using the proposed channel estimate at both the transmitter (preequalization) and receiver (postequalization) and compare the resulting bit error rate (BER) performance curves for both approaches and various channel estimation techniques. Simulation results show that the proposed RVM-based method is superior to the traditional least squares technique.

[1]  G. Giannakis,et al.  Wireless Multicarrier Communications where Fourier Meets , 2022 .

[2]  Vinod Subramaniam,et al.  Digital video broadcasting (DVB); framing structure, channel coding and modulation for digital terr , 2001 .

[3]  M. Peeters,et al.  Mitigation of radio interference in xDSL transmission , 2000 .

[4]  Nikolas P. Galatsanos,et al.  Relevance vector machines for DMT based systems , 2010, 2010 20th International Conference on Electronics Communications and Computers (CONIELECOMP).

[5]  S. Weinstein,et al.  Data Transmission by Frequency-Division Multiplexing Using the Discrete Fourier Transform , 1971 .

[6]  George Eastman House,et al.  Sparse Bayesian Learning and the Relevan e Ve tor Ma hine , 2001 .

[7]  J. Berger Statistical Decision Theory and Bayesian Analysis , 1988 .

[8]  E. K. Gannett,et al.  THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS , 1965 .

[9]  A. M. Abdullah,et al.  Wireless lan medium access control (mac) and physical layer (phy) specifications , 1997 .

[10]  Francisco J. Simois,et al.  Linear IIR Precoding for Non-Redundant Transmission over Minimum-Phase Channels in Wireline Multitone Systems , 2009, IEEE Transactions on Communications.

[11]  Yuan-Pei Lin,et al.  Receiver window designs for radio frequency interference suppression , 2006, 2006 14th European Signal Processing Conference.

[12]  Robert W. Heath,et al.  An overview of limited feedback in wireless communication systems , 2008, IEEE Journal on Selected Areas in Communications.

[13]  Savo Glisic Advanced Wireless Communications: 4G Technologies , 2004 .

[14]  N. Sokolov Telecommunications in Russia , 1992, IEEE Communications Magazine.

[15]  Erik Dahlman,et al.  3G Evolution: HSPA and LTE for Mobile Broadband , 2007 .

[16]  Sobia Baig,et al.  A discrete multitone transceiver at the heart of the PHY layer of an in-home power line communication local-area network , 2003, IEEE Commun. Mag..

[17]  S. Besen THE EUROPEAN TELECOMMUNICATIONS STANDARDS INSTITUTE: A PRELIMINARY ANALYSIS , 1990 .

[18]  Krista S. Jacobsen,et al.  Fundamentals of DSL Technology , 2005 .

[19]  A. Papoulis Signal Analysis , 1977 .

[20]  Georgios B. Giannakis,et al.  Wireless multicarrier communications , 2000, IEEE Signal Process. Mag..

[21]  Luc Vandendorpe,et al.  Equalization for DMT based broadband modems , 2000 .

[22]  S.K. Wilson,et al.  On channel estimation in OFDM systems , 1995, 1995 IEEE 45th Vehicular Technology Conference. Countdown to the Wireless Twenty-First Century.

[23]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[24]  K. Sistanizadeh,et al.  ADSL: a new twisted-pair access to the information highway , 1995, IEEE Commun. Mag..

[25]  John G. Proakis,et al.  Digital Communications , 1983 .

[26]  Michael E. Tipping,et al.  Analysis of Sparse Bayesian Learning , 2001, NIPS.

[27]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .