Semantic-preserving hashing establishes efficient multimedia retrieval by transferring knowledge from original data to hash codes so that the latter can preserve the underlying visual and semantic similarities. However, it becomes a crucial bottleneck: how to effectively bridge the trilateral domain gaps (i.e., the visual, semantic, and hashing spaces) to further improve the retrieval accuracy. In this article, we propose an inductive structure consistent hashing (ISCH) method, which can interactively coordinate the semantic correlations between the visual feature space, the binary class space, and the discrete hashing space. Specifically, an inductive semantic space is formulated by a simple multilayer stacking class-encoder, which transforms the naive class information into flexible semantic embeddings. Meanwhile, we design a semantic dictionary learning model to facilitate the bilateral visual-semantic bridging and guide the class-encoder toward reliable semantics, which could well alleviate the visual-semantic bias problem. In particular, the visual descriptors and respective semantic class representations are regularized with a coinciding alignment module. In order to generate privileged hash codes, we further explore semantic and prototype binary code learning to jointly quantify the semantic and latent visual representations into unified discrete hash codes. Moreover, an efficient optimization algorithm is developed to address the resulting discrete programming problem. Comprehensive experiments conducted on four large-scale data sets, i.e., CIFAR-10, NUSWIDE, ImageNet, and MSCOCO, demonstrate the superiority of our method over the state-of-the-art alternatives against different evaluation protocols.