Site-Specific Scaling Relations for Hydrocarbon Adsorption on Hexagonal Transition Metal Surfaces

Screening a large number of surfaces for their catalytic performance remains a challenge, leading to the need for simple models to predict adsorption properties. To facilitate rapid prediction of h...

[1]  D. J. Mowbray,et al.  Gold and Methane: A Noble Combination for Delicate Oxidation , 2013, 1308.5266.

[2]  E. Karp,et al.  Energetics of adsorbed CH3 on Pt(111) by calorimetry. , 2013, Journal of the American Chemical Society.

[3]  Yi Luo,et al.  Identification of the Scaling Relations for Binary Noble-Metal Nanoparticles , 2013 .

[4]  Matthew M. Montemore,et al.  A Simple, Accurate Model for Alkyl Adsorption on Late Transition Metals , 2013 .

[5]  F. Calle‐Vallejo,et al.  First-principles computational electrochemistry: Achievements and challenges , 2012 .

[6]  W. Goddard,et al.  Using Photoelectron Spectroscopy and Quantum Mechanics to Determine d-Band Energies of Metals for Catalytic Applications , 2012 .

[7]  Xinggui Zhou,et al.  Origin of synergistic effect over Ni-based bimetallic surfaces: a density functional theory study. , 2012, The Journal of chemical physics.

[8]  Matthew M. Montemore,et al.  A density functional study of C1-C4 alkyl adsorption on Cu(111). , 2012, The Journal of chemical physics.

[9]  Xinggui Zhou,et al.  First-Principles Calculations of Propane Dehydrogenation over PtSn Catalysts , 2012 .

[10]  Glen A. Ferguson,et al.  Exploring Computational Design of Size-Specific Subnanometer Clusters Catalysts , 2012, Topics in Catalysis.

[11]  H. Xin,et al.  Electronic Structure Engineering in Heterogeneous Catalysis: Identifying Novel Alloy Catalysts Based on Rapid Screening for Materials with Desired Electronic Properties , 2012, Topics in Catalysis.

[12]  J. Rossmeisl,et al.  Physical and chemical nature of the scaling relations between adsorption energies of atoms on metal surfaces. , 2012, Physical review letters.

[13]  J. Nørskov,et al.  Scaling relationships for adsorption energies of C2 hydrocarbons on transition metal surfaces , 2011 .

[14]  K. Mitsuhara,et al.  The d-band structure of Pt nanoclusters correlated with the catalytic activity for an oxygen reduction reaction , 2011 .

[15]  D. Vlachos,et al.  Kinetic Modeling of Pt Catalyzed and Computation-Driven Catalyst Discovery for Ethylene Glycol Decomposition , 2011 .

[16]  Wang Wei,et al.  Methanation of carbon dioxide: an overview , 2011 .

[17]  J. Nørskov,et al.  Universal Brønsted-Evans-Polanyi Relations for C–C, C–O, C–N, N–O, N–N, and O–O Dissociation Reactions , 2011 .

[18]  Xinggui Zhou,et al.  DFT study of propane dehydrogenation on Pt catalyst: effects of step sites. , 2011, Physical chemistry chemical physics : PCCP.

[19]  Jinlong Yang,et al.  First-Principles Thermodynamics of Graphene Growth on Cu Surfaces , 2011, 1101.3851.

[20]  D. Vlachos,et al.  Density Functional Theory-Derived Group Additivity and Linear Scaling Methods for Prediction of Oxygenate Stability on Metal Catalysts: Adsorption of Open-Ring Alcohol and Polyol Dehydrogenation Intermediates on Pt-Based Metals , 2010 .

[21]  John R. Kitchin,et al.  New solid-state table: estimating d-band characteristics for transition metal atoms , 2010 .

[22]  R. Jiang,et al.  Mechanism of the Ethylene Conversion to Ethylidyne on Rh(111): A Density Functional Investigation , 2010 .

[23]  Matthew Neurock,et al.  Reactivity theory of transition-metal surfaces: a Brønsted-Evans-Polanyi linear activation energy-free-energy analysis. , 2010, Chemical reviews.

[24]  O. Sugino,et al.  Hyper-Volcano Surface for Oxygen Reduction Reactions over Noble Metals , 2010 .

[25]  Jun Cheng,et al.  Some Understanding of Fischer–Tropsch Synthesis from Density Functional Theory Calculations , 2010 .

[26]  D. J. Mowbray,et al.  Trends in CO Oxidation Rates for Metal Nanoparticles and Close-Packed, Stepped, and Kinked Surfaces , 2009 .

[27]  J. Nørskov,et al.  Modeling ethanol decomposition on transition metals: a combined application of scaling and Brønsted-Evans-Polanyi relations. , 2009, Journal of the American Chemical Society.

[28]  S. Linic,et al.  Measuring and relating the electronic structures of nonmodel supported catalytic materials to their performance. , 2009, Journal of the American Chemical Society.

[29]  A. Gross Tailoring the reactivity of bimetallic overlayer and surface alloy systems , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[30]  J. Nørskov,et al.  First principles calculations and experimental insight into methane steam reforming over transition metal catalysts , 2008 .

[31]  P. Hu,et al.  Utilization of the three-dimensional volcano surface to understand the chemistry of multiphase systems in heterogeneous catalysis. , 2008, Journal of the American Chemical Society.

[32]  Jun Cheng,et al.  A DFT study of the chain growth probability in Fischer-Tropsch synthesis , 2008 .

[33]  J. Nørskov,et al.  Scaling relationships for adsorption energies on transition metal oxide, sulfide, and nitride surfaces. , 2008, Angewandte Chemie.

[34]  Zhipan Liu,et al.  Origin of selectivity switch in Fischer-Tropsch synthesis over Ru and Rh from first-principles statistical mechanics studies. , 2008, Journal of the American Chemical Society.

[35]  Jun Cheng,et al.  Chain Growth Mechanism in Fischer−Tropsch Synthesis: A DFT Study of C−C Coupling over Ru, Fe, Rh, and Re Surfaces , 2008 .

[36]  J. Nørskov,et al.  Using scaling relations to understand trends in the catalytic activity of transition metals , 2008, Journal of physics. Condensed matter : an Institute of Physics journal.

[37]  P. Hu,et al.  Bronsted-Evans-Polanyi relation of multistep reactions and volcano curve in heterogeneous catalysis , 2008 .

[38]  J. Medlin,et al.  Effects of Electronic Structure Modifications on the Adsorption of Oxygen Reduction Reaction Intermediates on Model Pt(111)-Alloy Surfaces , 2007 .

[39]  X. Bao,et al.  Density functional theory study of CHx (x=1-3) adsorption on clean and CO precovered Rh(111) surfaces. , 2007, The Journal of chemical physics.

[40]  Ture R. Munter,et al.  Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. , 2007, Physical review letters.

[41]  M. M. and,et al.  Kinetic Analysis of Rate Data for Dry Reforming of Methane , 2007 .

[42]  Seyed Mehdi Alavi,et al.  Syngas Production by Methane Reforming with Carbon Dioxide on Noble Metal Catalysts , 2006 .

[43]  Stefano de Gironcoli,et al.  Methane dehydrogenation on Rh@Cu(111): a first-principles study of a model catalyst. , 2006, Journal of the American Chemical Society.

[44]  J. G. Chen,et al.  Correlating electronic properties of bimetallic surfaces with reaction pathways of C2 hydrocarbons. , 2006, The journal of physical chemistry. B.

[45]  A. Alavi,et al.  Identification of general linear relationships between activation energies and enthalpy changes for dissociation reactions at surfaces. , 2003, Journal of the American Chemical Society.

[46]  Zhipan Liu,et al.  A new insight into Fischer-Tropsch synthesis. , 2002, Journal of the American Chemical Society.

[47]  M. Neurock,et al.  A First Principles Study of Carbon−Carbon Coupling over the {0001} Surfaces of Co and Ru , 2002 .

[48]  P. R. Pujadó,et al.  Dehydrogenation and oxydehydrogenation of paraffins to olefins , 2001 .

[49]  Zhipan Liu,et al.  General trends in the barriers of catalytic reactions on transition metal surfaces , 2001 .

[50]  Angelos Michaelides,et al.  Softened C–H modes of adsorbed methyl and their implications for dehydrogenation: An ab initio study , 2001 .

[51]  G. Papoian,et al.  A Comparative Theoretical Study of the Hydrogen, Methyl, and Ethyl Chemisorption on the Pt(111) Surface , 2000 .

[52]  William A. Goddard,et al.  Thermochemistry for Hydrocarbon Intermediates Chemisorbed on Metal Surfaces: CH_(n-m)(CH_3)_m with n = 1, 2, 3 and m ≤ n on Pt, Ir, Os, Pd, Rh, and Ru , 2000 .

[53]  J. Hafner,et al.  A theoretical study of CHx chemisorption on the Ru(0001) surface , 1999 .

[54]  J. Nørskov,et al.  Theoretical analysis of hydrogen chemisorption on Pd(111), Re(0001) and PdML/Re(0001), ReML/Pd(111) pseudomorphic overlayers , 1999 .

[55]  T. Mizuno,et al.  ELECTROCHEMICAL REDUCTION OF CARBON DIOXIDE TO HYDROCARBONS WITH HIGH FARADAIC EFFICIENCY IN LIOH/METHANOL , 1999 .

[56]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[57]  J. Nørskov,et al.  Effect of Strain on the Reactivity of Metal Surfaces , 1998 .

[58]  V. Grassian,et al.  A Comprehensive Study of the Reactions of Methyl Fragments from Methyl Iodide Dissociation on Reduced and Oxidized Silica-Supported Copper Nanoparticles , 1997 .

[59]  J. Nørskov,et al.  Surface electronic structure and reactivity of transition and noble metals , 1997 .

[60]  L. Schmidt,et al.  Platinum-tin and platinum-copper catalysts for autothermal oxidative dehydrogenation of ethane to ethylene , 1996 .

[61]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[62]  L. Schmidt,et al.  Catalytic partial oxidation of alkanes on silver in fluidized bed and monolith reactors , 1996 .

[63]  Jens K. Nørskov,et al.  Electronic factors determining the reactivity of metal surfaces , 1995 .

[64]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[65]  L. Schmidt,et al.  Olefins by Catalytic Oxidation of Alkanes in Fluidized-Bed Reactors , 1995 .

[66]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[67]  F. Zaera Molecular approach to the study of the mechanisms of alkyl reactions on metal surfaces , 1994 .

[68]  F. Solymosi,et al.  HREELS study of CH3I and CH3 adsorbed on Rh(111) surface , 1993 .

[69]  B. Bent,et al.  Coupling and disproportionation reactions of alkyl iodides on a single-crystal copper surface : alkyl radicals versus metal alkyls , 1993 .

[70]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[71]  F. Zaera Reversibility of C1 hydrogenation-dehydrogenation reactions on platinum surfaces under vacuum , 1991 .

[72]  Hong Yang,et al.  Chemisorption of atomic H and CHx fragments on Ni(111) , 1991 .

[73]  Hong Yang,et al.  Ab initio chemisorption studies of methyl on nickel(111) , 1991 .

[74]  A. Bard,et al.  Electrochemical and Surface Studies of Carbon Dioxide Reduction to Methane and Ethylene at Copper Electrodes in Aqueous Solutions , 1989 .

[75]  Roald Hoffmann,et al.  Bonding and coupling of C1 fragments on metal surfaces , 1988 .

[76]  Gabor A. Somorjai,et al.  A covalent model for the bonding of adsorbed hydrocarbon fragments on the (111) face of platinum , 1983 .

[77]  J. Nørskov Covalent effects in the effective-medium theory of chemical binding: Hydrogen heats of solution in the3dmetals , 1982 .

[78]  E. Muetterties,et al.  Metal-hydrogen bridge bonding of hydrocarbons on metal surfaces. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[79]  D. M. Newns,et al.  Nature of the Bond in Hydrogen Chemisorption on Ni, Pd, and Pt , 1979 .

[80]  D. M. Newns,et al.  Simple model of hydrogen and lithium chemisorption on jellium substrates , 1979 .

[81]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[82]  D. M. Newns Self-Consistent Model of Hydrogen Chemisorption , 1969 .

[83]  J. Brønsted Acid and Basic Catalysis. , 1928 .

[84]  P. Sabatier,et al.  Hydrogénations et déshydrogénations par catalyse , 1911 .

[85]  M. Rahmani,et al.  A UBI-QEP microkinetic study for Fischer-Tropsch synthesis on iron catalysts , 2012 .

[86]  H. Xin,et al.  Predictive Structure–Reactivity Models for Rapid Screening of Pt-Based Multimetallic Electrocatalysts for the Oxygen Reduction Reaction , 2012 .

[87]  P. Albers,et al.  Catalyst poisoning by methyl groups , 1999 .

[88]  T. Chuang,et al.  THE SURFACE CHEMISTRY OF METHYL AND METHYLENE RADICALS ADSORBED ON CU(111) , 1999 .

[89]  E. Shustorovich,et al.  The UBI-QEP method: A practical theoretical approach to understanding chemistry on transition metal surfaces , 1998 .

[90]  Van Santen,et al.  Molecular orbital studies of the adsorption of CH3, CH2, and ch on Rh(111) and Ni(111) surfaces , 1991 .

[91]  M. G. Evans,et al.  Inertia and driving force of chemical reactions , 1938 .