Vibration-based damage detection of slab structure using artificial neural network

Kertas kerja ini memaparkan kajian berkenaan keberkesanan Artificial Neural Network (ANN) dalam mengenal pasti kerosakan di dalam struktur. Data dari getaran seperti frekuensi semula jadi dan mod bentuk digunakan sebagai data masukan bagi ANN untuk meramalkan lokasi dan tahap kerosakan bagi struktur lantai. Analisis unsur terhingga (Finite Element Analysis) telah digunakan untuk memperoleh ciri–ciri dinamik bagi struktur–struktur rosak dan tidak rosak untuk ‘melatih’ model ‘neural network’. Senario kerosakan yang berbeza disimulasikan dengan mengurangkan kekukuhan elemen pada lokasi yang berbeza sepanjang struktur tersebut. Berbagai kombinasi data masukan bagi mod yang berbeza telah digunakan untuk memperolehi model ANN yang terbaik. Hasil kajian ini menunjukkan ANN mampu memberikan keputusan yang baik dalam meramal kerosakan pada struktur lantai tersebut. Kata kunci: Ramalan kerosakan struktur, Artificial Neural Network This paper investigates the effectiveness of artificial neural network (ANN) in identifying damages in structures. Global (natural frequencies) and local (mode shapes) vibration–based data has been used as the input to ANN for location and severity prediction of damages in a slab–like structure. A finite element analysis has been used to obtain the dynamic characteristics of intact and damaged structure to train the neural network model. Different damage scenarios have been introduced by reducing the local stiffness of the selected elements at different locations along the structure. Several combinations of input variables in different modes have been used in order to obtain a reliable ANN model. The trained ANN model is validated using laboratory test data. The results show that ANN is capable of providing acceptable result on damage prediction of tested slab structure. Key words: Structural damage detection, artificial neural network

[1]  S. Masri,et al.  Application of Neural Networks for Detection of Changes in Nonlinear Systems , 2000 .

[2]  John N. Ivan,et al.  Structural Damage Detection Using Artificial Neural Networks , 1998 .

[3]  James H. Garrett,et al.  Use of neural networks in detection of structural damage , 1992 .

[4]  Jonathan Lee,et al.  BRIDGE DAMAGE ASSESSMENT THROUGH FUZZY PETRI NET BASED EXPERT SYSTEM , 2000 .

[5]  Alianna J. Maren,et al.  Configurating and optimizing the back-propagation network , 1990 .

[6]  Mehmet Imregun,et al.  STRUCTURAL DAMAGE DETECTION USING ARTIFICIAL NEURAL NETWORKS AND MEASURED FRF DATA REDUCED VIA PRINCIPAL COMPONENT PROJECTION , 2001 .

[7]  M. L. Wang,et al.  Structural Damage Detection Using an Iterative Neural Network , 2000 .

[8]  Poyu Tsou,et al.  Structural damage detection and identification using neural networks , 1993 .

[9]  Pc Pandey,et al.  Vibration signature analysis using artificial neural networks , 1995 .

[10]  Singiresu S Rao,et al.  Structural damage detection and identification using fuzzy logic , 2000 .

[11]  Yi-Qing Ni,et al.  Constructing input vectors to neural networks for structural damage identification , 2002 .

[12]  Sami F. Masri,et al.  Neural Network Approach to Detection of Changes in Structural Parameters , 1996 .

[13]  Prabhat Hajela,et al.  Damage Detection in Structures Based on Feature‐Sensitive Neural Networks , 1994 .

[14]  O. S. Salawu Detection of structural damage through changes in frequency: a review , 1997 .

[15]  R. A. Shenoi,et al.  Quantification and localisation of damage in beam-like structures by using artificial neural networks with experimental validation , 2003 .

[16]  Seamus D. Garvey,et al.  A COMBINED GENETIC AND EIGENSENSITIVITY ALGORITHM FOR THE LOCATION OF DAMAGE IN STRUCTURES , 1998 .

[17]  Robert D. Adams,et al.  The location of defects in structures from measurements of natural frequencies , 1979 .