Investigation of the open ring form of nicotinamide adenine dinucleotide.

In strong alkali, nicotinamide adenine dinucleotide (NAD+) undergoes a ring opening of the nicotinamide ring. The open form of NAD+, ONAD, has two pKa values at--1.9 and 11.2 and absorbs maximally at 350 nm in its acidic form, at 372 nm in its neutral form, and at 340 nm in its aniomic form. ONAD has the chemical properties expected for a Schiff base of 2-carboxamideglutacondialdehyde (CGDA) and adenosine diphosphate ribosylamine. The decomposition of ONAD has been studied over a wide range of pH. A final product of ONAD hydrolysis is the base fluorescent compound 2-hydroxynicotinaldehyde. In the pH range 10--13, CGDA can be trapped as an intermediate, which absorbs maximally at 345 nm in its anionic form and at 320 nm in its neutral form, pKa = 2.9. The yield of 2-hydroxynicotinaldehyde from ONAD has been estimated as 95% at NaOH concentrations of 5 N and above, and is postulated to result from ring closure of CGDA. The pseudobase hydroxide ring addition adduct of NAD+, psiNAD-OH, is reversibly formed from NAD+ and is the 370-nm precursor of ONAD.

[1]  D. Moras,et al.  Three-dimensional structure of D-glyceraldehyde-3-phosphate dehydrogenase. , 1974, Journal of molecular biology.

[2]  S. Taylor,et al.  Structure-function relationships in lactate dehydrogenase. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[3]  N. Kaplan,et al.  Regulatory characteristics of lactate dehydrogenases. , 1972, Advances in enzyme regulation.

[4]  Guilbert Cc,et al.  Isolation and characterization of the fluorescent alkali product from diphosphopyridine nucleotide , 1971 .

[5]  N. Kaplan,et al.  The formation of ternary complexes by diphosphopyridine nucleotide-dependent dehydrogenases. , 1971, Archives of biochemistry and biophysics.

[6]  D. L. Morrison,et al.  The alkaline reaction of nicotinamide adenine dinucleotide, a new transient intermediate. , 1970, The Journal of biological chemistry.

[7]  E. Marvell,et al.  Influence of para substituents on the rate of cyclization of 5-anilino-N-phenyl-2,4-pentadienylidenimine , 1970 .

[8]  D. L. Morrison,et al.  Substituent effects on pyridinium ring-opening reactions. Facile ring opening of 1-(N,N-dimethylcarbamoyl)nicotinamide cation. , 1970, Biochemistry.

[9]  S. L. Johnson,et al.  Ring-opening reaction of 1-(N,N-dimethylcarbamoyl)pyridinium chloride with hydroxide. A model for the alkaline diphosphopyridine nucleotide reaction. , 1970, Biochemistry.

[10]  J. Koskikallio,et al.  Kinetics of the Reactions of Formaldehyde with Substituted Benzamides in Water. , 1970 .

[11]  T. C. Bruice,et al.  Anionic nucleophilic attack upon a carboxyl anion , 1969 .

[12]  D. Robinson Direct observation of a tetrahedral intermediate during amidine hydrolysis , 1970 .

[13]  U. Künsch,et al.  Spectrophotometric analysis of rat liver lactate dehydrogenase-coenzyme and coenzyme analog complexes. , 1968, Archives of biochemistry and biophysics.

[14]  K. Wallenfels,et al.  Über den Mechanismus der Wasserstoffübertragung mit Pyridinnucleotiden, XXIX. Synthese und Reaktionen von N‐Methyl‐3.4.5‐tricyan‐pyridiniumperchlorat , 1967 .

[15]  G. Yagil Effect of ionic hydration in equilibria and rates in concentrated electrolyte solutions. III. The H- scale in concentrated hydroxide solutions , 1967 .

[16]  K. Wallenfels,et al.  Über den mechanismus der wasserstoffübertragung mit pyridinnukleotiden—XXVIII: Der zusammenhang zwischen bindungszustand in dihydropyridinen und elektronenspektroskopischen daten , 1967 .

[17]  E. R. Garrett,et al.  The Acid-Catalyzed Solvolysis of Pyrimidine Nucleosides1 , 1966 .

[18]  Y. Nishizuka,et al.  STUDIES ON THE METABOLISM OF THE BENZENE RING OF TRYPTOPHAN IN MAMMALIAN TISSUES. II. ENZYMIC FORMATION OF ALPHA-AMINOMUCONIC ACID FROM 3-HYDROXYANTHRANILIC ACID. , 1965, The Journal of biological chemistry.

[19]  M. Klingenberg Diphosphopyridine Nucleotide (DPN) , 1965 .

[20]  S. Chaykin,et al.  The borohydride reduction products of DPN. , 1964, Biochemical and biophysical research communications.

[21]  B. Anderson,et al.  The effect of buffers on nicotinamide adenine dinucleotide hydrolysis. , 1963, The Journal of biological chemistry.

[22]  W. Jencks,et al.  On the Mechanism of Schiff Base Formation and Hydrolysis , 1962 .

[23]  J. Bunnett Kinetics of Reactions in Moderately Concentrated Aqueous Acids. I. Classification of Reactions1,2 , 1961 .

[24]  J. Bunnett Kinetics of Reactions in Moderately Concentrated Aqueous Acids. II. An Empirical Criterion of Mechanism1,2 , 1961 .

[25]  O. H. Lowry,et al.  The stability of pyridine nucleotides. , 1961, The Journal of biological chemistry.

[26]  H. Fromm Evidence for ternary-complex formation with rabbit-muscle lactic acid dehydrogenase, diphosphopyridine nucleotide and pyruvic acid. , 1961, Biochimica et biophysica acta.

[27]  O. Hayaishi,et al.  Metapyrocatachase: a new catechol-cleaving enzyme. , 1961, The Journal of biological chemistry.

[28]  N. Kaplan,et al.  The enzyme-coenzyme-substrate complexes of pyridine nucleotide dependent dehydrogenases. , 1958, Biochimica et biophysica acta.

[29]  F. Long,et al.  H0 And Related Indicator Acidity Function , 1957 .

[30]  N. Kaplan,et al.  Direct evidence for a diphosphopyridine nucleotide-hydroxylamine complex with horse liver alcohol dehydrogenase. , 1954, The Journal of biological chemistry.

[31]  E. Racker,et al.  The mechanism of oxidation of aldehydes by glyceralde-hyde-3-phosphate dehydrogenase. , 1952, The Journal of biological chemistry.

[32]  C. C. Barnes,et al.  Effect of alkali on diphosphopyridine nucleotide. , 1951, The Journal of biological chemistry.

[33]  G. Schwarzenbach,et al.  Aciditätsmessungen an unbeständigen Substanzen , 1940 .

[34]  H. Freytag,et al.  Einwirkung ultravioletter Strahlen auf Pyridin. (I. Mitteilung). Ein neuer Nachweis einiger primärer aromatischer Amine und des Pyridins , 1932 .

[35]  H. Decker Ueber einige Ammoniumverbindungen. Einwirkung von Alkalien auf die Oxydihydrobasen , 1903 .