Parahydrogen-induced polarization allows 2000-fold signal enhancement in biologically active derivatives of the peptide-based drug octreotide

[1]  G. Buntkowsky,et al.  A disintegrin derivative as a case study for PHIP labeling of disulfide bridged biomolecules , 2022, Scientific Reports.

[2]  T. Schwartz,et al.  PET/MR Imaging of Somatostatin Receptor Expression and Tumor Vascularity in Meningioma: Implications for Pathophysiology and Tumor Outcomes , 2022, Frontiers in Oncology.

[3]  Suyong Han,et al.  A Versatile Compact Parahydrogen Membrane Reactor. , 2021, Chemphyschem : a European journal of chemical physics and physical chemistry.

[4]  S. Aime,et al.  Effect of the hydrogenation solvent in the PHIP-SAH hyperpolarization of [1- 13 C]pyruvate , 2021, 2108.01497.

[5]  G. Buntkowsky,et al.  Parahydrogen‐Induced Polarization of Amino Acids , 2021, Angewandte Chemie.

[6]  S. Aime,et al.  Hydrogenative-PHIP polarized metabolites for biological studies , 2021, Magnetic Resonance Materials in Physics, Biology and Medicine.

[7]  Ronghui Zhou,et al.  An inexpensive apparatus for up to 97% continuous-flow parahydrogen enrichment using liquid helium. , 2020, Journal of magnetic resonance.

[8]  G. Buntkowsky,et al.  Magnetic Resonance Signal Amplification by Reversible Exchange of Selective PyFALGEA Oligopeptide Ligands Towards Epidermal Growth Factor Receptors , 2020, Chembiochem : a European journal of chemical biology.

[9]  D. Budker,et al.  Singlet‐Contrast Magnetic Resonance Imaging: Unlocking Hyperpolarization with Metabolism , 2020, Angewandte Chemie.

[10]  J. Blanchard,et al.  Rapid hyperpolarization and purification of the metabolite fumarate in aqueous solution , 2020, Proceedings of the National Academy of Sciences.

[11]  H. Kolmar,et al.  Ultrafast Single-Scan 2D NMR Spectroscopic Detection of a PHIP-Hyperpolarized Protease Inhibitor. , 2019, Chemistry.

[12]  Alexej Jerschow,et al.  Parahydrogen-Based Hyperpolarization for Biomedicine. , 2018, Angewandte Chemie.

[13]  J. Rosenholm,et al.  Targeting Somatostatin Receptors By Functionalized Mesoporous Silica Nanoparticles - Are We Striking Home? , 2018, Nanotheranostics.

[14]  S. Aime,et al.  The 13C hyperpolarized pyruvate generated by ParaHydrogen detects the response of the heart to altered metabolism in real time , 2018, Scientific Reports.

[15]  S. Glöggler,et al.  Pulsed Magnetic Resonance to Signal‐Enhance Metabolites within Seconds by utilizing para‐Hydrogen , 2018, ChemistryOpen.

[16]  H. Amthauer,et al.  [Somatostatin receptor PET/CT (SSTR-PET/CT)]. , 2018, Nuklearmedizin. Nuclear medicine.

[17]  G. Buntkowsky,et al.  A highly versatile automatized setup for quantitative measurements of PHIP enhancements. , 2017, Journal of magnetic resonance.

[18]  P. Høilund-Carlsen,et al.  Evaluation of somatostatin and nucleolin receptors for therapeutic delivery in non-small cell lung cancer stem cells applying the somatostatin-analog DOTATATE and the nucleolin-targeting aptamer AS1411 , 2017, PloS one.

[19]  Mathias Nilsson Diffusion NMR , 2017, Magnetic resonance in chemistry : MRC.

[20]  P. Rayner,et al.  Delivering strong 1H nuclear hyperpolarization levels and long magnetic lifetimes through signal amplification by reversible exchange , 2017, Proceedings of the National Academy of Sciences.

[21]  P. Chandrasekharan,et al.  Octreotide Functionalized Nano-Contrast Agent for Targeted Magnetic Resonance Imaging. , 2016, Biomacromolecules.

[22]  M. Bernstein Reaction monitoring using NMR , 2016, Magnetic resonance in chemistry : MRC.

[23]  I. Koptyug,et al.  Production of Catalyst-Free Hyperpolarised Ethanol Aqueous Solution via Heterogeneous Hydrogenation with Parahydrogen , 2015, Scientific Reports.

[24]  M. Mcphail,et al.  Magnetic Resonance Imaging: Principles and Techniques: Lessons for Clinicians. , 2015, Journal of clinical and experimental hepatology.

[25]  G. Buntkowsky,et al.  NMR signal enhancement by effective SABRE labeling of oligopeptides. , 2015, Chemistry.

[26]  Silvio Aime,et al.  ParaHydrogen Induced Polarization of 13C carboxylate resonance in acetate and pyruvate , 2015, Nature Communications.

[27]  H. Kolmar,et al.  Effective PHIP labeling of bioactive peptides boosts the intensity of the NMR signal. , 2014, Angewandte Chemie.

[28]  I. Koptyug,et al.  Toward Continuous Production of Catalyst-Free Hyperpolarized Fluids Based on Biphasic and Heterogeneous Hydrogenations with Parahydrogen , 2013 .

[29]  H. Kolmar,et al.  PHIP-label: parahydrogen-induced polarization in propargylglycine-containing synthetic oligopeptides. , 2013, Chemical communications.

[30]  A. Jerschow,et al.  Hyperpolarization of amino acid precursors to neurotransmitters with parahydrogen induced polarization. , 2013, Chemical communications.

[31]  R. Kaptein,et al.  Transfer of Parahydrogen Induced Polarization in Scalar Coupled Systems at Variable Magnetic Field , 2012 .

[32]  Bernhard Blümich,et al.  Para-hydrogen induced polarization of amino acids, peptides and deuterium-hydrogen gas. , 2011, Physical chemistry chemical physics : PCCP.

[33]  G. Morelli,et al.  Nanoparticles containing octreotide peptides and gadolinium complexes for MRI applications , 2011, Journal of peptide science : an official publication of the European Peptide Society.

[34]  V. Korshun,et al.  Practical synthesis of isomerically pure 5- and 6-carboxytetramethylrhodamines, useful dyes for DNA probes. , 2009, Bioconjugate chemistry.

[35]  K. D. Atkinson,et al.  Reversible Interactions with para-Hydrogen Enhance NMR Sensitivity by Polarization Transfer , 2009, Science.

[36]  Peter Güntert,et al.  Automated structure determination from NMR spectra , 2009, European Biophysics Journal.

[37]  Harald Schwalbe,et al.  Perspectives on NMR in drug discovery: a technique comes of age , 2008, Nature Reviews Drug Discovery.

[38]  D. Townsend Combined positron emission tomography-computed tomography: the historical perspective. , 2008, Seminars in ultrasound, CT, and MR.

[39]  F. Albericio,et al.  Chlorotrityl Chloride (CTC) resin as a reusable carboxyl protecting group. , 2007 .

[40]  C. Bowers Sensitivity Enhancement Utilizing Parahydrogen , 2007 .

[41]  J. Reubi,et al.  68Ga-DOTANOC: a first compound for PET imaging with high affinity for somatostatin receptor subtypes 2 and 5 , 2005, European Journal of Nuclear Medicine and Molecular Imaging.

[42]  Oskar Axelsson,et al.  Hyperpolarization of 13C through order transfer from parahydrogen: a new contrast agent for MRI. , 2005, Magnetic resonance imaging.

[43]  E. V. Kudryavtseva,et al.  The Use of Hydrogen Peroxide for Closing Disulfide Bridges in Peptides , 2004, Russian journal of bioorganic chemistry.

[44]  Christian Bruns,et al.  Opportunities in somatostatin research: biological, chemical and therapeutic aspects , 2003, Nature Reviews Drug Discovery.

[45]  B. Bernard,et al.  DOTA-NOC, a high-affinity ligand of somatostatin receptor subtypes 2, 3 and 5 for labelling with various radiometals , 2003, European Journal of Nuclear Medicine and Molecular Imaging.

[46]  P. Schöffski,et al.  Biokinetics and imaging with the somatostatin receptor PET radioligand 68Ga-DOTATOC: preliminary data , 2001, European Journal of Nuclear Medicine.

[47]  J. Reubi,et al.  Affinity profiles for human somatostatin receptor subtypes SST1–SST5 of somatostatin radiotracers selected for scintigraphic and radiotherapeutic use , 2000, European Journal of Nuclear Medicine.

[48]  K. Lam,et al.  Site-specific modification of a single-chain antibody using a novel glyoxylyl-based labeling reagent. , 1999, Bioconjugate chemistry.

[49]  J. Bargon,et al.  Intermediate Product-Catalyst Complexes in the Homogeneous Hydrogenation of Styrene Derivatives with Parahydrogen and Cationic RhI Catalysts. , 1998, Angewandte Chemie.

[50]  G. Melacini,et al.  Multiconformational NMR analysis of sandostatin (octreotide): equilibrium between beta-sheet and partially helical structures. , 1997, Biochemistry.

[51]  J. Bodurka,et al.  Analysis of the 1H NMR Line Shape Found in Animal Lenses , 1996 .

[52]  J. Bargon,et al.  Efficient NMR Pulse Sequences to Transfer the Parahydrogen-Induced Polarization to Hetero Nuclei , 1996 .

[53]  Ad Bax,et al.  Methodological advances in protein NMR , 1993 .

[54]  A. Heitz,et al.  A facile synthesis of chiral N-protected β-amino alcohols. , 1991 .

[55]  R. Kimmich Dynamic processes in aqueous protein systems. Molecular theory and NMR relaxation , 1990 .

[56]  D. Weitekamp,et al.  Net NMR alignment by adiabatic transport of parahydrogen addition products to high magnetic field , 1988 .

[57]  Richard Eisenberg,et al.  Para hydrogen induced polarization in hydrogenation reactions , 1987 .

[58]  Daniel P. Weitekamp,et al.  Parahydrogen and synthesis allow dramatically enhanced nuclear alignment , 1987 .

[59]  Bowers,et al.  Transformation of symmetrization order to nuclear-spin magnetization by chemical reaction and nuclear magnetic resonance. , 1986, Physical review letters.

[60]  P. Marbach,et al.  SMS 201-995: a very potent and selective octapeptide analogue of somatostatin with prolonged action. , 1982, Life sciences.

[61]  M. Goldman,et al.  Principles of dynamic nuclear polarisation , 1978 .

[62]  F. Graham,et al.  Characteristics of a human cell line transformed by DNA from human adenovirus type 5. , 1977, The Journal of general virology.

[63]  S. H. Koenig,et al.  Protein-water interaction studied by solvent 1H, 2H, and 17O magnetic relaxation. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[64]  S. Aaronson,et al.  In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. , 1973, Journal of the National Cancer Institute.

[65]  H. Fischer,et al.  Kernresonanz-Emissionslinien während rascher Radikalreaktionen , 1967 .

[66]  R. B. Merrifield Solid phase peptide synthesis. I. the synthesis of a tetrapeptide , 1963 .

[67]  Uwe Haberkorn,et al.  Evaluation of positron emission tomography imaging using [68Ga]-DOTA-D Phe(1)-Tyr(3)-Octreotide in comparison to [111In]-DTPAOC SPECT. First results in patients with neuroendocrine tumors. , 2003, Molecular imaging and biology : MIB : the official publication of the Academy of Molecular Imaging.

[68]  H. Wenschuh,et al.  Stepwise Automated Solid Phase Synthesis of Naturally Occurring Peptaibols Using FMOC Amino Acid Fluorides , 1995 .

[69]  J. Reubi,et al.  Chemistry and pharmacology of SMS 201-995, a long-acting octapeptide analogue of somatostatin. , 1986, Scandinavian journal of gastroenterology. Supplement.