Implementing a Multi-Model Estimation Method
暂无分享,去创建一个
[1] Philip H. S. Torr,et al. The Development and Comparison of Robust Methods for Estimating the Fundamental Matrix , 1997, International Journal of Computer Vision.
[2] Olivier D. Faugeras,et al. The First Order Expansion of Motion Equations in the Uncalibrated Case , 1996, Comput. Vis. Image Underst..
[3] Peter Meer,et al. A general method for Errors-in-Variables problems in computer vision , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).
[4] W. Rey. Introduction to Robust and Quasi-Robust Statistical Methods , 1983 .
[5] Azriel Rosenfeld,et al. Robust regression methods for computer vision: A review , 1991, International Journal of Computer Vision.
[6] Richard I. Hartley,et al. In Defense of the Eight-Point Algorithm , 1997, IEEE Trans. Pattern Anal. Mach. Intell..
[7] Reyes Enciso,et al. Experimental Self-Calibration from Four Views , 1995, ICIAP.
[8] Kenichi Kanatani,et al. Geometric computation for machine vision , 1993 .
[9] Soraya Arias,et al. Formalisation et intégration en vision par ordinateur temps réel. (Formalisation and Integration for Real Time Computer Vision) , 1999 .
[10] J. Miller. Numerical Analysis , 1966, Nature.
[11] Thierry Viéville,et al. Implementing a Variant of the Kanatani's Estimation Method , 2000 .
[12] Yonathan Bard,et al. Nonlinear parameter estimation , 1974 .
[13] Thierry Viéville,et al. Using collineations to compute motion and structure in an uncalibrated image sequence , 1996, International Journal of Computer Vision.
[14] 金谷 健一. Statistical optimization for geometric computation : theory and practice , 2005 .
[15] Diane Lingrand,et al. Analyse adaptative du mouvement dans des séquences monoculaires non calibrées , 1999 .
[16] P. Torr. Geometric motion segmentation and model selection , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[17] Rachid Deriche,et al. A Robust Technique for Matching two Uncalibrated Images Through the Recovery of the Unknown Epipolar Geometry , 1995, Artif. Intell..
[18] Peter J. Rousseeuw,et al. Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.
[19] Richard I. Hartley,et al. Estimation of Relative Camera Positions for Uncalibrated Cameras , 1992, ECCV.
[20] Olivier D. Faugeras,et al. A theory of self-calibration of a moving camera , 1992, International Journal of Computer Vision.
[21] Thierry Viéville,et al. Hierarchical Visual Perception without Calibration , 1996 .
[22] N. Draper,et al. Applied Regression Analysis. , 1967 .
[23] Philip E. Gill,et al. Practical optimization , 1981 .
[24] Patrick Rives,et al. Réalisation et calibration d'un système expérimental de vision composé d'une caméra mobile embarquée sur un robot-manipulateur , 1989 .
[25] Walerian Kipiniak,et al. Optimal Estimation, Identification, and Control , 1964 .
[26] Kenichi Kanatani,et al. Informat ion Criter ion , 2005 .
[27] William H. Press,et al. Numerical recipes in C , 2002 .
[28] Q. WeiG.,et al. Implicit and Explicit Camera Calibration , 1994 .
[29] K. Kanatani,et al. Statistical optimization and geometric inference in computer vision , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[30] Charles V. Stewart,et al. Bias in robust estimation caused by discontinuities and multiple structures , 1997, IEEE Trans. Pattern Anal. Mach. Intell..
[31] Richard I. Hartley,et al. In defence of the 8-point algorithm , 1995, Proceedings of IEEE International Conference on Computer Vision.
[32] Bill Triggs. Optimal Estimation of Matching Constraints , 1998, SMILE.
[33] M. J. D. Powell,et al. THE CONVERGENCE OF VARIABLE METRIC METHODS FOR NONLINEARLY CONSTRAINED OPTIMIZATION CALCULATIONS , 1978 .
[34] Zhengyou Zhang,et al. Parameter estimation techniques: a tutorial with application to conic fitting , 1997, Image Vis. Comput..
[35] J. Grimm,et al. Optimal Time and Minimum Space-Time Product for Reversing a Certain Class of Programs , 1996 .
[36] Robert C. Bolles,et al. A RANSAC-Based Approach to Model Fitting and Its Application to Finding Cylinders in Range Data , 1981, IJCAI.
[37] O. Faugeras,et al. On determining the fundamental matrix : analysis of different methods and experimental results , 1993 .
[38] T. Brubaker,et al. Nonlinear Parameter Estimation , 1979 .
[39] Hirotugu Akaike,et al. On entropy maximization principle , 1977 .
[40] Yoram Leedan. Statistical analysis of quadratic problems in computer vision , 1997 .
[41] G. Celeux,et al. Assessing a Mixture Model for Clustering with the Integrated Classification Likelihood , 1998 .
[42] Thierry Viéville,et al. Using Specific Displacements to Analyze Motion without Calibration , 1999, International Journal of Computer Vision.
[43] T. Viéville,et al. Using pseudo Kalman-filters in the presence of constraints application to sensing behaviors , 1992 .
[44] Songde Ma,et al. Implicit and Explicit Camera Calibration: Theory and Experiments , 1994, IEEE Trans. Pattern Anal. Mach. Intell..
[45] Olivier D. Faugeras,et al. Motion of points and lines in the uncalibrated case , 2004, International Journal of Computer Vision.
[46] Arthur Gelb,et al. Applied Optimal Estimation , 1974 .
[47] John H. Holland,et al. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .
[48] Peter Meer,et al. Heteroscedastic Regression in Computer Vision: Problems with Bilinear Constraint , 2000, International Journal of Computer Vision.
[49] William L. Brogan. Applied Optimal Estimation (Arthur Gels, ed.) , 1977 .
[50] PlaneFrançois GaspardandThierry ViévilleRobotvis. Non Linear Minimization and Visual Localization of a , 2000 .
[51] B. Ripley,et al. Robust Statistics , 2018, Encyclopedia of Mathematical Geosciences.