Analysis of the Modified Mass Method for the Dynamic Signorini Problem with Coulomb Friction

The aim of the present work is to analyze the modified mass method for the dynamic Signorini problem with Coulomb friction. We prove that the space semidiscrete problem is equivalent to an upper semicontinuous one-sided Lipschitz differential inclusion and is, therefore, well-posed. We derive an energy balance. Next, considering an implicit time-integration scheme, we prove that, under a CFL-type condition on the discretization parameters, the fully discrete problem is well-posed. For a fixed discretization in space, we also prove that the fully discrete solutions converge to the space semidiscrete solution when the time step tends to zero.

[1]  Houari Boumediène Khenous Problèmes de contact unilatéral avec frottement de Coulomb en élastostatique et élastodynamique. Etude mathématique et résolution numérique. , 2005 .

[2]  J. Hesthaven,et al.  On the constants in hp-finite element trace inverse inequalities , 2003 .

[3]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[4]  B. Brogliato Nonsmooth Impact Mechanics: Models, Dynamics and Control , 1996 .

[5]  Yves Renard,et al.  The singular dynamic method for constrained second order hyperbolic equations: Application to dynamic contact problems , 2010, J. Comput. Appl. Math..

[6]  K. Deimling Multivalued Differential Equations , 1992 .

[7]  Patrick Laborde,et al.  Mass redistribution method for finite element contact problems in elastodynamics , 2008 .

[8]  Patrice Hauret,et al.  Mixed interpretation and extensions of the equivalent mass matrix approach for elastodynamics with contact , 2010 .

[9]  G. Smirnov Introduction to the Theory of Differential Inclusions , 2002 .

[10]  Patrick Hild,et al.  Local uniqueness and continuation of solutions for the discrete Coulomb friction problem in elastostatics , 2005 .

[11]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[12]  Christof Eck,et al.  Unilateral Contact Problems: Variational Methods and Existence Theorems , 2005 .

[13]  M. Cocou Existence of solutions of a dynamic Signorini's problem with nonlocal friction in viscoelasticity , 2002 .

[14]  R. Cooke Real and Complex Analysis , 2011 .

[15]  Zdzisław Denkowski,et al.  Set-Valued Analysis , 2021 .

[16]  Patrick Ballard,et al.  Existence and uniqueness for dynamical unilateral contact with Coulomb friction: a model problem , 2005 .

[17]  Alexandre Ern,et al.  Time-Integration Schemes for the Finite Element Dynamic Signorini Problem , 2011, SIAM J. Sci. Comput..

[18]  Steen Krenk,et al.  Energy conservation in Newmark based time integration algorithms , 2006 .

[19]  Patrick Laborde,et al.  Fixed point strategies for elastostatic frictional contact problems , 2008 .

[20]  W. Han,et al.  Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity , 2002 .

[21]  C. HAGER,et al.  Analysis of a Space-Time Discretization for Dynamic Elasticity Problems Based on Mass-Free Surface Elements , 2009, SIAM J. Numer. Anal..

[22]  David E. Stewart,et al.  Rigid-Body Dynamics with Friction and Impact , 2000, SIAM Rev..

[23]  J. Hiriart-Urruty,et al.  Fundamentals of Convex Analysis , 2004 .

[24]  W. Rudin Real and complex analysis, 3rd ed. , 1987 .

[25]  Barbara Wohlmuth,et al.  A stable energy‐conserving approach for frictional contact problems based on quadrature formulas , 2008 .

[26]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[27]  R. Temam Navier-Stokes Equations , 1977 .

[28]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[29]  Rolf Krause,et al.  Presentation and comparison of selected algorithms for dynamic contact based on the Newmark scheme , 2012 .

[30]  Alexandre Ern,et al.  Convergence of a space semi-discrete modified mass method for the dynamic Signorini problem , 2009 .