Linear k-Arboricity in Product Networks

A \emph{linear $k$-forest} is a forest whose components are paths of length at most $k$. The \emph{linear $k$-arboricity} of a graph $G$, denoted by ${\rm la}_k(G)$, is the least number of linear $k$-forests needed to decompose $G$. Recently, Zuo, He and Xue studied the exact values of the linear $(n-1)$-arboricity of Cartesian products of various combinations of complete graphs, cycles, complete multipartite graphs. In this paper, for general $k$ we show that $\max\{{\rm la}_{k}(G),{\rm la}_{\ell}(H)\}\leq {\rm la}_{\max\{k,\ell\}}(G\Box H)\leq {\rm la}_{k}(G)+{\rm la}_{\ell}(H)$ for any two graphs $G$ and $H$. Denote by $G\circ H$, $G\times H$ and $G\boxtimes H$ the lexicographic product, direct product and strong product of two graphs $G$ and $H$, respectively. We also derive upper and lower bounds of ${\rm la}_{k}(G\circ H)$, ${\rm la}_{k}(G\times H)$ and ${\rm la}_{k}(G\boxtimes H)$ in this paper. The linear $k$-arboricity of a $2$-dimensional grid graph, a $r$-dimensional mesh, a $r$-dimensional torus, a $r$-dimensional generalized hypercube and a $2$-dimensional hyper Petersen network are also studied.

[1]  Nicholas C. Wormald,et al.  More on the linear k-arboricity of regular graphs , 1998, Australas. J Comb..

[2]  Ko-Wei Lih,et al.  The Linear 2-Arboricity of Planar Graphs , 2003, Graphs Comb..

[3]  Alon Itai,et al.  The Multi-Tree Approach to Reliability in Distributed Networks , 1988, Inf. Comput..

[4]  Yaping Mao,et al.  Path-connectivity of lexicographic product graphs , 2016, Int. J. Comput. Math..

[5]  Jian-Liang Wu,et al.  The Linear Arboricity of Graphs on Surfaces of Negative Euler Characteristic , 2008, SIAM J. Discret. Math..

[6]  Y. Mao Path connectivity of line graphs , 2016, 1603.03995.

[7]  Abdel Elah Al-Ayyoub,et al.  The Cross Product of Interconnection Networks , 1997, IEEE Trans. Parallel Distributed Syst..

[8]  Hung-Lin Fu,et al.  LINEAR 2-ARBORICITY OF THE COMPLETE GRAPH , 2010 .

[9]  Jean-Claude Bermond,et al.  On linear k-arboricity , 1984, Discret. Math..

[10]  Hung-Lin Fu,et al.  Linear k-arboricities on trees , 2000, Discret. Appl. Math..

[11]  M. Habib,et al.  La k-Arboricité Linéaire Des Arbres , 1983 .

[12]  F. Harary COVERING AND PACKING IN GRAPHS, I. , 1970 .

[13]  Bing Xue,et al.  On the linear (n-1)-arboricity of Kn(m) , 2010, Discret. Appl. Math..

[14]  Sabine R. Öhring,et al.  Embeddings Into Hyper Petersen Networks: Yet Another Hypercube-Like Interconnection Topology , 1995 .

[15]  Liancui Zuo,et al.  THE LINEAR (n 1)-ARBORICITY OF CARTESIAN PRODUCT GRAPHS , 2015 .

[16]  Aleksander Vesel,et al.  On the linear K-arboricity of cubic graphs , 2000, Int. J. Comput. Math..

[17]  Bill Jackson,et al.  On the linear k-arboricity of cubic graphs , 1996, Discret. Math..

[18]  Yoshihide Igarashi,et al.  Reliable broadcasting in product networks , 1998, Discret. Appl. Math..

[19]  Biing-Feng Wang,et al.  Constructing Edge-Disjoint Spanning Trees in Product Networks , 2003, IEEE Trans. Parallel Distributed Syst..

[20]  Selim G. Akl,et al.  Optimal Communication Primitives on the Generalized Hypercube Network , 1996, J. Parallel Distributed Comput..

[21]  S. Lennart Johnsson,et al.  Optimum Broadcasting and Personalized Communication in Hypercubes , 1989, IEEE Trans. Computers.

[22]  Herbert S. Wilf,et al.  The Number of Independent Sets in a Grid Graph , 1998, SIAM J. Discret. Math..

[23]  N. Alon The linear arboricity of graphs , 1988 .

[24]  G. A. Dirac,et al.  On Hamilton circuits and Hamilton paths , 1972 .

[25]  Noga Alon,et al.  Linear Arboricity and Linear k-Arboricity of Regular Graphs , 2001, Graphs Comb..

[26]  Gerard J. Chang,et al.  ALGORITHMIC ASPECTS OF LINEAR k-ARBORICITY , 1999 .

[27]  Kuo-Ching Huang,et al.  On the linear k-arboricity of Kn and Kn, n , 2002, Discret. Math..

[28]  Renu C. Laskar,et al.  On decomposition of r-partite graphs into edge-disjoint hamilton circuits , 1976, Discret. Math..