A new route to achieve high strength and high ductility compositions in Cr-Co-Ni-based medium-entropy alloys: A predictive model connecting theoretical calculations and experimental measurements

[1]  E. George,et al.  Temperature-dependent yield stress of single crystals of non-equiatomic Cr-Mn-Fe-Co-Ni high-entropy alloys in the temperature range 10-1173 K , 2023, Acta Materialia.

[2]  Katsushi Tanaka,et al.  Formation Condition and Effect on the Early Stages of Plastic Deformation of Chemical Short-Range Order in Cr-Co-Ni Medium-Entropy alloy , 2023, Journal of Alloys and Compounds.

[3]  E. George,et al.  Evolution of short-range order and its effects on the plastic deformation behavior of single crystals of the equiatomic Cr-Co-Ni medium-entropy alloy , 2022, Acta Materialia.

[4]  G. Laplanche,et al.  Effects of Stacking Fault Energy and Temperature on Grain Boundary Strengthening, Intrinsic Lattice Strength and Deformation Mechanisms in CrMnFeCoNi High-Entropy Alloys with Different Cr/Ni Ratios , 2022, SSRN Electronic Journal.

[5]  F. Coury,et al.  A Hall–Petch study of the high toughness Cr_40Co_30Ni_30 multi-principal element alloy , 2022, Journal of Materials Research.

[6]  A. Chiba,et al.  Si-addition contributes to overcoming the strength-ductility trade-off in high-entropy alloys , 2022, International Journal of Plasticity.

[7]  Z. Zhang,et al.  Design and optimization of the composition and mechanical properties for non-equiatomic CoCrNi medium-entropy alloys , 2022, Journal of Materials Science & Technology.

[8]  R. Ritchie,et al.  Exceptional fracture toughness of CrCoNi-based medium- and high-entropy alloys at 20 kelvin , 2022, Science.

[9]  K. Kishida,et al.  Uniaxial mechanical properties of face-centered cubic single- and multiphase high-entropy alloys , 2022, MRS Bulletin.

[10]  Chunhui Wang,et al.  Advanced mechanical properties obtained via accurately tailoring stacking fault energy in Co-rich and Ni-depleted CoxCr33Ni67-x medium-entropy alloys , 2022, Scripta Materialia.

[11]  Liqiang Wang,et al.  Metalloid substitution elevates simultaneously the strength and ductility of face-centered-cubic high-entropy alloys , 2021, Acta Materialia.

[12]  E. George,et al.  Tensile and compressive plastic deformation behavior of medium-entropy Cr-Co-Ni single crystals from cryogenic to elevated temperatures , 2021, International Journal of Plasticity.

[13]  Y. Ikeda,et al.  Effect of solid-solution strengthening on deformation mechanisms and strain hardening in medium-entropy V1-Cr CoNi alloys , 2021, Journal of Materials Science & Technology.

[14]  C. Kiminami,et al.  Hall–Petch and grain growth kinetics of the low stacking fault energy TRIP Cr40Co40Ni20 multi-principal element alloy , 2021, Applied Physics Letters.

[15]  Md. Lokman Ali Enhanced lattice distortion, yield strength, critical resolved shear stress, and improving mechanical properties of transition-metals doped CrCoNi medium entropy alloy , 2021, RSC advances.

[16]  W. Fang,et al.  Plastic deformation mechanism of CoCrxNi medium entropy alloys , 2021 .

[17]  W. Fang,et al.  Microstructure and mechanical properties of CoCrNi-Mo medium entropy alloys: Experiments and first-principle calculations , 2021 .

[18]  E. George,et al.  Plastic deformation of single crystals of the equiatomic Cr−Mn−Fe−Co−Ni high-entropy alloy in tension and compression from 10 K to 1273 K , 2021 .

[19]  N. Tsuji,et al.  Yield strength and misfit volumes of NiCoCr and implications for short-range-order , 2020, Nature Communications.

[20]  N. Tsuji,et al.  Effect of Cobalt-Content on Mechanical Properties of Non-Equiatomic Co–Cr–Ni Medium Entropy Alloys , 2020 .

[21]  Yuan Wu,et al.  Cooperative deformation in high-entropy alloys at ultralow temperatures , 2020, Science Advances.

[22]  R. Ritchie,et al.  Verification of Short-Range Order and Its Impact on the Properties of the CrCoNi Medium Entropy Alloy , 2019, 1912.05610.

[23]  C. Kiminami,et al.  Design and in-situ characterization of a strong and ductile co-rich multicomponent alloy with transformation induced plasticity , 2019 .

[24]  W. Curtin,et al.  Correlation of microdistortions with misfit volumes in High Entropy Alloys , 2019, Scripta Materialia.

[25]  H. Kato,et al.  Novel Co-rich high performance twinning-induced plasticity (TWIP) and transformation-induced plasticity (TRIP) high-entropy alloys , 2019, Scripta Materialia.

[26]  R. Ritchie,et al.  Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys , 2019, Progress in Materials Science.

[27]  H. Sheng,et al.  Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways , 2019, Nature Communications.

[28]  D. Ponge,et al.  Ultrastrong Medium‐Entropy Single‐Phase Alloys Designed via Severe Lattice Distortion , 2018, Advanced materials.

[29]  A. Clarke,et al.  High-Throughput Solid Solution Strengthening Characterization in High Entropy Alloys , 2018, Acta Materialia.

[30]  H. Kato,et al.  Novel Co-rich high entropy alloys with superior tensile properties , 2019, Materials Research Letters.

[31]  N. Jones,et al.  Lattice distortions in high-entropy alloys , 2018, Journal of Materials Research.

[32]  Peter D. Lee,et al.  Probing deformation mechanisms of a FeCoCrNi high-entropy alloy at 293 and 77 K using in situ neutron diffraction , 2018 .

[33]  A. Clarke,et al.  High Throughput Discovery and Design of Strong Multicomponent Metallic Solid Solutions , 2018, Scientific Reports.

[34]  R. Ritchie,et al.  Tunable stacking fault energies by tailoring local chemical order in CrCoNi medium-entropy alloys , 2018, Proceedings of the National Academy of Sciences.

[35]  Tianwei Liu,et al.  Critical stress for twinning nucleation in CrCoNi-based medium and high entropy alloys , 2018 .

[36]  Junyang He,et al.  Stacking fault energy of face-centered-cubic high entropy alloys , 2018 .

[37]  Haitao Jiang,et al.  Deformation mechanism transition in Fe–17Mn–0.4C–0.06V TWIP steel with different strain rates , 2018 .

[38]  Y. Estrin,et al.  Twinning-induced plasticity (TWIP) steels , 2018 .

[39]  D. Raabe,et al.  Strong and Ductile Non-equiatomic High-Entropy Alloys: Design, Processing, Microstructure, and Mechanical Properties , 2017, JOM.

[40]  G. M. Stocks,et al.  Stacking fault energies of face-centered cubic concentrated solid solution alloys , 2017 .

[41]  T. Nieh,et al.  Correlation between lattice distortion and friction stress in Ni-based equiatomic alloys , 2017 .

[42]  W. J. Weber,et al.  Local Structure and Short-Range Order in a NiCoCr Solid Solution Alloy. , 2017, Physical review letters.

[43]  E. George,et al.  Reasons for the superior mechanical properties of medium-entropy CrCoNi compared to high-entropy CrMnFeCoNi , 2017 .

[44]  C. Liu,et al.  The origin of negative stacking fault energies and nano-twin formation in face-centered cubic high entropy alloys , 2017 .

[45]  Zijiao Zhang,et al.  Dislocation mechanisms and 3D twin architectures generate exceptional strength-ductility-toughness combination in CrCoNi medium-entropy alloy , 2017, Nature Communications.

[46]  William A. Curtin,et al.  Solute strengthening in random alloys , 2017 .

[47]  Tsuchida Noriyuki,et al.  Effect of specimen size on true stress-true strain relationship up to the plastic deformation limit in ultrafine-grained ferrite-cementite steels , 2017 .

[48]  E. George,et al.  Atomic displacement in the CrMnFeCoNi high-entropy alloy – A scaling factor to predict solid solution strengthening , 2016 .

[49]  Haruyuki Inui,et al.  Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy , 2016, Scientific Reports.

[50]  D. Miracle,et al.  A critical review of high entropy alloys and related concepts , 2016 .

[51]  C. Tasan,et al.  Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off , 2016, Nature.

[52]  Bernd Gludovatz,et al.  Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures , 2016, Nature Communications.

[53]  P. Rivera-Díaz-del-Castillo,et al.  Modelling solid solution hardening in high entropy alloys , 2015 .

[54]  R. Tanaka,et al.  Thermodynamic stability of Mg-Y-Zn ternary alloys through first-principles , 2015, 1502.01138.

[55]  Lei Lu,et al.  The influence of sample thickness on the tensile properties of pure Cu with different grain sizes , 2013 .

[56]  M. Koyama,et al.  Premature Fracture Mechanism in an Fe-Mn-C Austenitic Steel , 2012, Metallurgical and Materials Transactions A.

[57]  Atsuto Seko,et al.  First-principles-based phase diagram of the cubic BNC ternary system , 2008 .

[58]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[59]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[60]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[61]  Wang,et al.  Accurate and simple analytic representation of the electron-gas correlation energy. , 1992, Physical review. B, Condensed matter.

[62]  Ferreira,et al.  Special quasirandom structures. , 1990, Physical review letters.

[63]  Paxton,et al.  High-precision sampling for Brillouin-zone integration in metals. , 1989, Physical review. B, Condensed matter.

[64]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[65]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[66]  P. Kelly The martensite transformation in steels with low stacking fault energy , 1965 .

[67]  A. Howie,et al.  Stacking fault energies of Ni-Co-Cr alloys , 1964 .

[68]  T. Mitchell,et al.  The dependence of cross-slip on stacking-fault energy in face-centred cubic metals and alloys , 1962 .