Spatial optical phase-modulating metadevice with subwavelength pixelation.

Dynamic control over optical wavefronts enables focusing, diffraction and redirection of light on demand, however, sub-wavelength resolution is required to avoid unwanted diffracted beams that are present in commercial spatial light modulators. Here we propose a realistic metadevice that dynamically controls the optical phase of reflected beams with sub-wavelength pixelation in one dimension. Based on reconfigurable metamaterials and nanomembrane technology, it consists of individually moveable metallic nanowire actuators that control the phase of reflected light by modulating the optical path length. We demonstrate that the metadevice can provide on-demand optical wavefront shaping functionalities of diffraction gratings, beam splitters, phase-gradient metasurfaces, cylindrical mirrors and mirror arrays - with variable focal distance and numerical aperture - without unwanted diffraction.

[1]  Chih-Ming Wang,et al.  High-efficiency broadband anomalous reflection by gradient meta-surfaces. , 2012, Nano letters.

[2]  N. Zheludev,et al.  Phase-change chalcogenide glass metamaterial , 2009, 0912.4288.

[3]  T. Kippenberg,et al.  Plasmon nanomechanical coupling for nanoscale transduction. , 2013, Nano letters.

[4]  David M. Bloom,et al.  Grating Light Valve: revolutionizing display technology , 1997, Electronic Imaging.

[5]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[6]  N. Zheludev,et al.  Reconfigurable nanomechanical photonic metamaterials. , 2016, Nature nanotechnology.

[7]  Eric Plum,et al.  Coherent control of Snell's law at metasurfaces. , 2014, Optics express.

[8]  Xiang Zhang,et al.  Ultrafast modulation of optical metamaterials , 2009 .

[9]  Andreas Hermerschmidt,et al.  1 LCOS Spatial Light Modulators: Trends and Applications , 2012 .

[10]  Nikolay I. Zheludev,et al.  Nonlinear graphene metamaterial , 2012, 1203.5365.

[11]  Eric Plum,et al.  An electromechanically reconfigurable plasmonic metamaterial operating in the near-infrared. , 2013, Nature nanotechnology.

[12]  Vladimir M. Shalaev,et al.  Plasmonic nanoantenna arrays for the visible , 2008 .

[13]  Nikolay I. Zheludev,et al.  Ultrafast all-optical switching via coherent modulation of metamaterial absorption , 2014 .

[14]  YongKeun Park,et al.  Recent advances in wavefront shaping techniques for biomedical applications , 2015, 1502.05475.

[15]  A meta-diffraction-grating for visible light , 2013 .

[16]  Ai Qun Liu,et al.  Switchable Magnetic Metamaterials Using Micromachining Processes , 2011, Advanced materials.

[17]  João Valente,et al.  Two-dimensional control of light with light on metasurfaces , 2016, Light: Science & Applications.

[18]  Koray Aydin,et al.  Highly strained compliant optical metamaterials with large frequency tunability. , 2010, Nano letters.

[19]  T. Kippenberg,et al.  Plasmomechanical Resonators Based on Dimer Nanoantennas. , 2015, Nano letters.

[20]  Nikolay I. Zheludev,et al.  A magneto-electro-optical effect in a plasmonic nanowire material , 2015, Nature Communications.

[21]  Nikolay I. Zheludev,et al.  Obtaining optical properties on demand , 2015, Science.

[22]  Nikolay I. Zheludev,et al.  Reconfiguring photonic metamaterials with currents and magnetic fields , 2015 .

[23]  T. Kippenberg,et al.  Parallel Transduction of Nanomechanical Motion Using Plasmonic Resonators , 2014, ACS photonics.

[24]  Hu Tao,et al.  Reconfigurable terahertz metamaterials. , 2009, Physical review letters.

[25]  Yuri Kivshar,et al.  Structural tunability in metamaterials , 2009, 0907.2303.

[26]  Nikolay I. Zheludev,et al.  Reconfigurable photonic metamaterials , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[27]  Toshihiro Okamoto,et al.  Electrically driven plasmon chip: Active plasmon filter , 2013 .

[28]  S. Brueck,et al.  Subpicosecond optical switching with a negative index metamaterial. , 2009, Nano letters.

[29]  Byung-Gyu Chae,et al.  Memory Metamaterials , 2009, Science.

[30]  N. Zheludev,et al.  Metamaterial electro-optic switch of nanoscale thickness , 2010 .

[31]  Nikolay I. Zheludev,et al.  Controlling light-with-light without nonlinearity , 2012, Light: Science & Applications.

[32]  S. Spearing,et al.  Materials Selection and Design of Microelectrothermal Bimaterial Actuators , 2007, Journal of Microelectromechanical Systems.

[33]  Erez Hasman,et al.  Polarization dependent focusing lens by use of quantized Pancharatnam–Berry phase diffractive optics , 2003 .