Star and planet formation with the new generation VLTI and CHARA beam combiners

The diversity of planetary systems discovered in recent years has reinforced the interest in the conditions of the formation of stars and their planetary systems. The new generation of imaging instruments at the VLTI (PIONIER, GRAVITY, MATISSE) and CHARA (MYSTIC, MIRC-X) provides not only the high spatial and spectral resolution necessary to study YSOs but also high astrometric precision and high sensitivity. This makes it possible to extend the study of stellar parameters, the dust distribution and composition in protoplanetary disks, and gas accretion and outflows to fainter objects. It also allows us to investigate the different stages of star and planet formation, from embedded objects over protoplanetary and debris disks to the orbits and atmospheres of planets. The use of arrays with four or even six telescopes provides more opportunities for image reconstruction, to understand complex structures. This paper is a review of recent results obtained on those topics.

[1]  Sebastian Wolf,et al.  The potential of combining MATISSE and ALMA observations: constraining the structure of the innermost region in protoplanetary discs , 2019, Astronomy & Astrophysics.

[2]  G. Perrin,et al.  The GRAVITY young stellar object survey , 2020, 2011.05955.

[3]  Myriam Benisty,et al.  The innermost astronomical units of protoplanetary disks , 2016, Astronomical Telescopes + Instrumentation.

[4]  G. Montagnier,et al.  PIONIER: a 4-telescope visitor instrument at VLTI , 2011, 1109.1918.

[5]  Rafael Millan-Gabet,et al.  The Inner Disk of RY Tau: Evidence of Stellar Occultation by the Disk Atmosphere at the Sublimation Rim from K-band Continuum Interferometry , 2020, The Astrophysical Journal.

[6]  G. Weigelt,et al.  A study of dust properties in the inner sub-au region of the Herbig Ae star HD 169142 with VLTI/PIONIER , 2017, 1709.06514.

[7]  Olivier Absil,et al.  A near-infrared interferometric survey of debris-disk stars - IV. An unbiased sample of 92 southern stars observed in H band with VLTI/PIONIER , 2014 .

[8]  S. Rabien,et al.  First light for GRAVITY: Phase referencing optical interferometry for the Very Large Telescope Interferometer , 2017, 1705.02345.

[9]  K. Perraut,et al.  Probing the magnetospheric accretion region of the young pre-transitional disk system DoAr 44 using VLTI/GRAVITY , 2020 .

[10]  Stefan Kraus,et al.  First NIR interferometrically resolved high-order Brackett and forbidden Fe lines of a B[e] star: V921 Sco , 2019 .

[11]  P. T. de Zeeuw,et al.  The GRAVITY young stellar object survey. II. First spatially resolved observations of the CO bandhead emission in a high-mass YSO , 2020, 2003.05404.

[12]  Rafael Millan-Gabet,et al.  Probing the Inner Disk Emission of the Herbig Ae Stars HD 163296 and HD 190073 , 2018, The Astrophysical Journal.

[13]  I. Mendigut'ia,et al.  On the Mass Accretion Rates of Herbig Ae/Be Stars. Magnetospheric Accretion or Boundary Layer? , 2020, Galaxies.

[14]  S. Rabien,et al.  Peering into the formation history of β Pictoris b with VLTI/GRAVITY long-baseline interferometry , 2019 .

[15]  P. Ábrahám,et al.  VLTI/MIDI atlas of disks around low- and intermediate-mass young stellar objects , 2018, Astronomy & Astrophysics.

[16]  G. Herczeg,et al.  Accretion onto Pre-Main-Sequence Stars , 2016 .

[17]  S. Wolf,et al.  Interferometric study on the temporal variability of the brightness distributions of protoplanetary disks , 2020, Astronomy & Astrophysics.

[18]  Gerd Weigelt,et al.  On the Brγ line emission of the Herbig Ae/Be star MWC 120 , 2018 .

[19]  Á. Kóspál,et al.  Dust evolution in the circumstellar disc of the unclassified B[e] star HD 50138 , 2019, Monthly Notices of the Royal Astronomical Society.

[20]  Michael M. Dunham,et al.  Diagnosing 0.1–10 au Scale Morphology of the FU Ori Disk Using ALMA and VLTI/GRAVITY , 2019, The Astrophysical Journal.

[21]  Bruno Lopez,et al.  An Overview of the MATISSE Instrument — Science, Concept and Current Status , 2014 .

[22]  R. Briguglio,et al.  New Spatially Resolved Imaging of the SR 21 Transition Disk and Constraints on the Small-grain Disk Geometry , 2019, The Astrophysical Journal.

[23]  Stefan Kraus,et al.  The interferometric view of Herbig Ae/Be stars , 2015 .

[24]  A. Matter,et al.  Spatially resolving the chemical composition of the planet building blocks , 2020, Monthly Notices of the Royal Astronomical Society.

[25]  B. Mennesson,et al.  A near-infrared interferometric survey of debris-disk stars. VI. Extending the exozodiacal light survey with CHARA/JouFLU , 2017 .

[26]  C. Moutou,et al.  Investigating the magnetospheric accretion process in the young pre-transitional disk system DoAr 44 (V2062 Oph) , 2020, Astronomy & Astrophysics.

[27]  Julien H. Girard,et al.  Unveiling the β Pictoris system, coupling high contrast imaging, interferometric, and radial velocity data , 2020, Astronomy & Astrophysics.

[28]  B. Lazareff,et al.  Structure of Herbig AeBe disks at the milliarcsecond scale: A statistical survey in the H band using PIONIER-VLTI , 2016, 1611.08428.

[29]  S. Rabien,et al.  First direct detection of an exoplanet by optical interferometry , 2019, Astronomy & Astrophysics.

[30]  T. J. Harries,et al.  Magnetospheric Accretion in Classical T Tauri Stars , 2006, astro-ph/0603498.

[31]  John D. Monnier,et al.  MIRC-X: A Highly Sensitive Six-telescope Interferometric Imager at the CHARA Array , 2020, The Astronomical Journal.

[32]  G. Zins,et al.  A family portrait of disk inner rims around Herbig Ae/Be stars , 2020 .

[33]  G. Rousset,et al.  The GRAVITY young stellar object survey , 2020, 2008.08527.

[34]  Rafael Millan-Gabet,et al.  Compact gaseous accretion disk in Keplerian rotation around MWC 147 , 2019, Astronomy & Astrophysics.

[35]  Rafael Millan-Gabet,et al.  Dusty disk winds at the sublimation rim of the highly inclined, low mass young stellar object SU Aurigae , 2019, Astronomy & Astrophysics.

[36]  Julien H. Girard,et al.  Retrieving scattering clouds and disequilibrium chemistry in the atmosphere of HR 8799e , 2020, Astronomy & Astrophysics.

[37]  D. Mourard,et al.  Constraints on HD 113337 fundamental parameters and planetary system , 2019, Astronomy & Astrophysics.

[38]  R. Abuter,et al.  The GRAVITY fringe tracker , 2019, Astronomy & Astrophysics.

[39]  C. Waelkens,et al.  The structure of disks around intermediate-mass young stars from mid-infrared interferometry. Evidence for a population of group II disks with gaps , 2015, 1506.03274.

[40]  L. Marion,et al.  A near-infrared interferometric survey of debris-disc stars. V. PIONIER search for variability , 2016, 1608.05731.

[41]  Jean-Philippe Berger,et al.  Protoplanetary environments at the astronomical unit scale: the contribution of long baseline interferometry , 2018, Astronomical Telescopes + Instrumentation.

[42]  John D. Monnier,et al.  A High-mass Protobinary System with Spatially Resolved Circumstellar Accretion Disks and Circumbinary Disk , 2016, 1612.07804.

[43]  John D. Monnier,et al.  A triple-star system with a misaligned and warped circumstellar disk shaped by disk tearing , 2020, Science.

[44]  S. Rabien,et al.  The GRAVITY Young Stellar Object survey. I. Probing the disks of Herbig Ae/Be stars in terrestrial orbits , 2019, 1911.00611.

[45]  G. Zins,et al.  A measure of the size of the magnetospheric accretion region in TW Hydrae , 2020, Nature.

[46]  J. D. Monnier,et al.  The Inner Regions of Protoplanetary Disks , 2010, 1006.3485.

[47]  Gerd Weigelt,et al.  Variable Warm Dust around the Herbig Ae Star HD 169142: Birth of a Ring? , 2019 .

[48]  J. S. Vink,et al.  Resolving the MYSO binaries PDS 27 and PDS 37 with VLTI/PIONIER , 2019, Astronomy & Astrophysics.

[49]  European Southern Observatory,et al.  The GRAVITY young stellar object survey , 2019, Astronomy & Astrophysics.