Syndromic and non‐syndromic disease‐linked Cx43 mutations

There are now at least 14 distinct diseases linked to germ line mutations in the 21 genes that encode the connexin (Cx) family of gap junction proteins. This review focuses on the links between germ‐line mutations in the gene encoding Cx43 (GJA1) and the human disease termed oculodentodigital dysplasia (ODDD). This disease is clinically characterized by soft tissue fusion of the digits, abnormal craniofacial bone development, small eyes and loss of tooth enamel. However, the disease is considerably more complex and somewhat degenerative as patients often suffer from other syndromic effects that include incontinence, glaucoma, skin diseases and neuropathies that become more pronounced during aging. The challenge continues to be understanding how distinct Cx43 gene mutations cause such a diverse range of tissue phenotypes and pathophysiological changes while other Cx43‐rich organs are relatively unaffected. This review will provide an overview of many of these studies and distill some themes and outstanding questions that need to be addressed in the coming years.

[1]  T. Loddenkemper,et al.  Neurological manifestations of the oculodentodigital dysplasia syndrome , 2002, Journal of Neurology.

[2]  D. Laird Closing the Gap on Autosomal Dominant Connexin-26 and Connexin-43 Mutants Linked to Human Disease* , 2008, Journal of Biological Chemistry.

[3]  J. Saffitz,et al.  Rapid turnover of connexin43 in the adult rat heart. , 1998, Circulation research.

[4]  D. Laird,et al.  Functional Domain Mapping and Selective Trans-dominant Effects Exhibited by Cx26 Disease-causing Mutations* , 2004, Journal of Biological Chemistry.

[5]  S. John,et al.  Connexon integrity is maintained by non-covalent bonds: intramolecular disulfide bonds link the extracellular domains in rat connexin-43. , 1991, Biochemical and biophysical research communications.

[6]  G. Fishman,et al.  Myogenic bladder defects in mouse models of human oculodentodigital dysplasia. , 2014, The Biochemical journal.

[7]  Bernd Wollnik,et al.  Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. , 2003, American journal of human genetics.

[8]  M. Barron,et al.  Novel Mutations in GJA1 Cause Oculodentodigital syndrome , 2008, Journal of dental research.

[9]  I. Plante,et al.  Decreased levels of connexin43 result in impaired development of the mammary gland in a mouse model of oculodentodigital dysplasia. , 2008, Developmental biology.

[10]  D. Laird,et al.  Cx43 has distinct mobility within plasma-membrane domains, indicative of progressive formation of gap-junction plaques , 2009, Journal of Cell Science.

[11]  D. Kelsell,et al.  Key functions for gap junctions in skin and hearing. , 2011, The Biochemical journal.

[12]  S. Tomkins,et al.  Variable expression of neurological phenotype in autosomal recessive oculodentodigital dysplasia of two sibs and review of the literature , 2008, European Journal of Pediatrics.

[13]  V. P. Costa,et al.  A novel mutation in the GJA1 gene in a family with oculodentodigital dysplasia. , 2005, Archives of ophthalmology.

[14]  E. Traboulsi,et al.  Oculodentodigital dysplasia: new ocular findings and a novel connexin 43 mutation. , 2011, Archives of ophthalmology.

[15]  D. Laird,et al.  Decreased levels of Cx43 gap junctions result in ameloblast dysregulation and enamel hypoplasia in Gja1Jrt/+ mice , 2010, Journal of cellular physiology.

[16]  Mark Yeager,et al.  Gap junction channel structure in the early 21st century: facts and fantasies. , 2007, Current opinion in cell biology.

[17]  P. Koivisto,et al.  Letter to the editor: Novel GJA1 mutation in oculodentodigital dysplasia , 2005, American journal of medical genetics. Part A.

[18]  M. C. Brañes,et al.  Plasma membrane channels formed by connexins: their regulation and functions. , 2003, Physiological reviews.

[19]  P. Lampe,et al.  Connexin43 phosphorylation: structural changes and biological effects. , 2009, The Biochemical journal.

[20]  B L Langille,et al.  Cardiac malformation in neonatal mice lacking connexin43. , 1995, Science.

[21]  D. Segretain,et al.  Regulation of connexin biosynthesis, assembly, gap junction formation, and removal. , 2004, Biochimica et biophysica acta.

[22]  J. Aubin,et al.  The G60S connexin 43 mutation activates the osteoblast lineage and results in a resorption‐stimulating bone matrix and abrogation of old‐age–related bone loss , 2013, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[23]  M. Holder-Espinasse,et al.  Oculo-dento-digital dysplasia: lack of genotype-phenotype correlation for GJA1 mutations and usefulness of neuro-imaging. , 2010, European journal of medical genetics.

[24]  A. Murakami,et al.  A case of oculodentodigital dysplasia syndrome with novel GJA1 gene mutation , 2007, Japanese Journal of Ophthalmology.

[25]  A. Moreno,et al.  Connexin43 and Connexin45 Form Heteromeric Gap Junction Channels in Which Individual Components Determine Permeability and Regulation , 2002, Circulation research.

[26]  U. Koppelhus,et al.  A novel mutation in the connexin 26 gene (GJB2) in a child with clinical and histological features of keratitis–ichthyosis–deafness (KID) syndrome , 2011, Clinical and experimental dermatology.

[27]  T. W. White,et al.  Connexin-26 mutations in deafness and skin disease , 2009, Expert Reviews in Molecular Medicine.

[28]  D. Paul,et al.  Connexin43: a protein from rat heart homologous to a gap junction protein from liver , 1987, The Journal of cell biology.

[29]  T. Steinberg,et al.  Connexin46 Is Retained as Monomers in a trans-Golgi Compartment of Osteoblastic Cells , 1997, The Journal of cell biology.

[30]  I. Plante,et al.  Fate of connexin43 in cardiac tissue harbouring a disease-linked connexin43 mutant. , 2008, Cardiovascular research.

[31]  J. Fabrikant,et al.  Overview of skin diseases linked to connexin gene mutations , 2014, International journal of dermatology.

[32]  Ji Xu,et al.  The role of connexins in ear and skin physiology - functional insights from disease-associated mutations. , 2013, Biochimica et biophysica acta.

[33]  M. Dixon,et al.  A nonsense mutation in the first transmembrane domain of connexin 43 underlies autosomal recessive oculodentodigital syndrome , 2005, Journal of Medical Genetics.

[34]  P. Lampe,et al.  Connexin43 phosphorylation in brain, cardiac, endothelial and epithelial tissues. , 2012, Biochimica et biophysica acta.

[35]  G. Richard,et al.  A Report of GJB2 (N14K) Connexin 26 Mutation in Two Patients—A New Subtype of KID Syndrome? , 2008, Pediatric dermatology.

[36]  J. Revel,et al.  Biochemical and immunochemical analysis of the arrangement of connexin43 in rat heart gap junction membranes. , 1990, Journal of cell science.

[37]  S. Mansour,et al.  A novel mutation in GJA1 causing oculodentodigital syndrome and primary lymphoedema in a three generation family , 2013, Clinical genetics.

[38]  E. Jabs,et al.  Oculodentodigital dysplasia connexin43 mutations result in non-functional connexin hemichannels and gap junctions in C6 glioma cells , 2006, Journal of Cell Science.

[39]  S. Scherer,et al.  A dominant connexin43 mutant does not have dominant effects on gap junction coupling in astrocytes. , 2010, Neuron glia biology.

[40]  M. Yeager,et al.  Membrane topology and quaternary structure of cardiac gap junction ion channels. , 1992, Journal of molecular biology.

[41]  N. Gilula,et al.  Specific amino-acid residues in the N-terminus and TM3 implicated in channel function and oligomerization compatibility of connexin43 , 2003, Journal of Cell Science.

[42]  D. Paul,et al.  Connexins, connexons, and intercellular communication. , 1996, Annual review of biochemistry.

[43]  A. Latos-Bieleńska,et al.  A novelGJA1 missense mutation in a Polish child with oculodentodigital dysplasia , 2009, Journal of Applied Genetics.

[44]  T. W. White,et al.  Connexin disorders of the ear, skin, and lens. , 2004, Biochimica et biophysica acta.

[45]  Park S. Nobel,et al.  Summary and Future Perspectives , 2004 .

[46]  D. Laird,et al.  Functional Characterization of a GJA1 Frameshift Mutation Causing Oculodentodigital Dysplasia and Palmoplantar Keratoderma* , 2006, Journal of Biological Chemistry.

[47]  D. Laird,et al.  Oculodentodigital Dysplasia-causing Connexin43 Mutants Are Non-functional and Exhibit Dominant Effects on Wild-type Connexin43* , 2005, Journal of Biological Chemistry.

[48]  C. van Broeckhoven,et al.  Mutations in the peripheral myelin genes and associated genes in inherited peripheral neuropathies , 1999, Human mutation.

[49]  D. Laird,et al.  Structure and functional studies of N-terminal Cx43 mutants linked to oculodentodigital dysplasia , 2012, Molecular biology of the cell.

[50]  A. Harris Emerging issues of connexin channels: biophysics fills the gap , 2001, Quarterly Reviews of Biophysics.

[51]  Tony Y. Li,et al.  Oogenesis defects in a mutant mouse model of oculodentodigital dysplasia , 2009, Disease Models & Mechanisms.

[52]  D. Tester,et al.  Connexin43 Mutation Causes Heterogeneous Gap Junction Loss and Sudden Infant Death , 2012, Circulation.

[53]  P. Koivisto,et al.  GJA1 mutations, variants, and connexin 43 dysfunction as it relates to the oculodentodigital dysplasia phenotype , 2009, Human mutation.

[54]  R. Winter,et al.  Localization of a gene for oculodentodigital syndrome to human chromosome 6q22-q24. , 1997, Human molecular genetics.

[55]  M. Passos-Bueno,et al.  A Novel Autosomal Recessive GJA1 Missense Mutation Linked to Craniometaphyseal Dysplasia , 2013, PloS one.

[56]  M. Geel,et al.  A 2‐bp deletion in the GJA1 gene is associated with oculo‐dento‐digital dysplasia with palmoplantar keratoderma , 2005, American journal of medical genetics. Part A.

[57]  M. Falk,et al.  Proteins and mechanisms regulating gap-junction assembly, internalization, and degradation. , 2013, Physiology.

[58]  S. Scherer,et al.  Gap junctions in inherited human disorders of the central nervous system. , 2012, Biochimica et biophysica acta.

[59]  E. Jabs,et al.  Linkage analysis narrows the critical region for oculodentodigital dysplasia to chromosome 6q22-q23. , 1999, Genomics.

[60]  F. Meire,et al.  Expression of Gja1 correlates with the phenotype observed in oculodentodigital syndrome/type III syndactyly , 2004, Journal of Medical Genetics.

[61]  M. De Bock,et al.  Neurological manifestations of oculodentodigital dysplasia: a Cx43 channelopathy of the central nervous system? , 2013, Front. Pharmacol..

[62]  Y. Horiguchi,et al.  A case of erythrokeratoderma variabilis: Loosened gap junctions in the acanthotic epidermis , 2006, The Journal of dermatology.

[63]  Malou M-Louise Haine,et al.  De Smet L. , 1986 .

[64]  D. Laird The gap junction proteome and its relationship to disease. , 2010, Trends in cell biology.

[65]  Tony Y. Li,et al.  In vivo analysis of undocked connexin43 gap junction hemichannels in ovarian granulosa cells , 2007, Journal of Cell Science.

[66]  J. Manias,et al.  Functional Characterization of Oculodentodigital Dysplasia-Associated Cx43 Mutants , 2005, Cell communication & adhesion.

[67]  Michael Koval Pathways and control of connexin oligomerization , 2006, Trends in Cell Biology.

[68]  J. Manias,et al.  Connexin Levels Regulate Keratinocyte Differentiation in the Epidermis* , 2007, Journal of Biological Chemistry.

[69]  Jie Zhang,et al.  Gap junction remodeling and cardiac arrhythmogenesis in a murine model of oculodentodigital dysplasia , 2007, Proceedings of the National Academy of Sciences.

[70]  S. Deschênes,et al.  Intracellular transport, assembly, and degradation of wild-type and disease-linked mutant gap junction proteins. , 2000, Molecular biology of the cell.

[71]  K. Willecke,et al.  Connexin-caused genetic diseases and corresponding mouse models. , 2009, Antioxidants & redox signaling.

[72]  R. Civitelli Connexin43 Modulation of Osteoblast/Osteocyte Apoptosis: A Potential Therapeutic Target? , 2008, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[73]  D. Kelsell,et al.  Connexins in epidermal homeostasis and skin disease. , 2012, Biochimica et biophysica acta.

[74]  I. Plante,et al.  Fate of connexin 43 in cardiac tissue harbouring a disease-linked connexin 43 mutant , 2008 .

[75]  D. Laird,et al.  Gap junction turnover, intracellular trafficking, and phosphorylation of connexin43 in brefeldin A-treated rat mammary tumor cells , 1995, The Journal of cell biology.

[76]  V. Krutovskikh,et al.  Connexin gene mutations in human genetic diseases. , 2000, Mutation research.

[77]  E. Sartorato,et al.  Connexin mutations in Brazilian patients with skin disorders with or without hearing loss , 2009, American journal of medical genetics. Part A.

[78]  K. Swoboda,et al.  Human dermal fibroblasts derived from oculodentodigital dysplasia patients suggest that patients may have wound‐healing defects , 2011, Human mutation.

[79]  G. T. Cottrell,et al.  Cx40 and Cx43 expression ratio influences heteromeric/ heterotypic gap junction channel properties. , 2002, American journal of physiology. Cell physiology.

[80]  M. Geel,et al.  Skin changes in oculo‐dento‐digital dysplasia are correlated with C‐terminal truncations of connexin 43 , 2007, American journal of medical genetics. Part A.

[81]  D. Laird,et al.  Differential Potency of Dominant Negative Connexin43 Mutants in Oculodentodigital Dysplasia* , 2007, Journal of Biological Chemistry.

[82]  E. Jabs,et al.  Functional Characterization of Connexin43 Mutations Found in Patients With Oculodentodigital Dysplasia , 2005, Circulation research.

[83]  A. Harris Connexin channel permeability to cytoplasmic molecules. , 2007, Progress in biophysics and molecular biology.

[84]  L. Reuss,et al.  Functional Expression in Xenopus Oocytes of Gap-junctional Hemichannels Formed by a Cysteine-less Connexin 43* , 2004, Journal of Biological Chemistry.

[85]  P. Brink,et al.  Evidence for heteromeric gap junction channels formed from rat connexin43 and human connexin37. , 1997, American journal of physiology. Cell physiology.

[86]  D. Laird,et al.  The potency of the fs260 connexin43 mutant to impair keratinocyte differentiation is distinct from other disease-linked connexin43 mutants , 2010, The Biochemical journal.

[87]  K. Okamoto,et al.  A novel GJA1 mutation in oculodentodigital dysplasia with progressive spastic paraplegia and sensory deficits. , 2012, Internal medicine.

[88]  The N-Terminal Half of the Connexin Protein Contains the Core Elements of the Pore and Voltage Gates , 2012, The Journal of Membrane Biology.

[89]  Colin McKerlie,et al.  A Gja1 missense mutation in a mouse model of oculodentodigital dysplasia , 2005, Development.

[90]  B. Dallapiccola,et al.  A homozygous GJA1 gene mutation causes a Hallermann‐Streiff/ODDD spectrum phenotype , 2004, Human mutation.

[91]  G. Fishman,et al.  The severity of mammary gland developmental defects is linked to the overall functional status of Cx43 as revealed by genetically modified mice , 2012, The Biochemical journal.

[92]  J. Chan,et al.  The G60S connexin43 mutant regulates hair growth and hair fiber morphology in a mouse model of human oculodentodigital dysplasia. , 2011, The Journal of investigative dermatology.

[93]  J. Opitz,et al.  Novel Connexin 43 (GJA1) mutation causes oculo–dento–digital dysplasia with curly hair , 2004, American journal of medical genetics. Part A.

[94]  G. Richard,et al.  A novel GJA 1 mutation in oculo-dento-digital dysplasia with curly hair and hyperkeratosis. , 2006, European journal of dermatology : EJD.

[95]  C. Naus,et al.  Cerebral ischemic injury is enhanced in a model of oculodentodigital dysplasia , 2013, Neuropharmacology.

[96]  G. Kidder,et al.  Decidual Angiogenesis and Placental Orientation Are Altered in Mice Heterozygous for a Dominant Loss-of-Function Gja1 (Connexin43) Mutation1 , 2013, Biology of reproduction.

[97]  K. Willecke,et al.  Some Oculodentodigital Dysplasia-Associated Cx43 Mutations Cause Increased Hemichannel Activity in Addition to Deficient Gap Junction Channels , 2007, Journal of Membrane Biology.

[98]  D. Laird,et al.  The G60S Cx43 mutant enhances keratinocyte proliferation and differentiation , 2012, Experimental dermatology.

[99]  P. Lampe,et al.  Regulation of connexin43 function by activated tyrosine protein kinases , 1996, Journal of bioenergetics and biomembranes.

[100]  D. Fenyö,et al.  Super-resolution fluorescence microscopy of the cardiac connexome reveals plakophilin-2 inside the connexin43 plaque. , 2013, Cardiovascular research.

[101]  J. Zenteno,et al.  A New GJA1 (Connexin 43) Mutation Causing Oculodentodigital Dysplasia Associated to Uncommon Features , 2007, Ophthalmic genetics.

[102]  Patricia E. M. Martin,et al.  The antiarrhythmic peptide rotigaptide (ZP123) increases gap junction intercellular communication in cardiac myocytes and HeLa cells expressing connexin 43 , 2006, British journal of pharmacology.

[103]  K. Willecke,et al.  Loss of connexin43-mediated gap junctional coupling in the mesenchyme of limb buds leads to altered expression of morphogens in mice. , 2009, Human molecular genetics.

[104]  D. Laird,et al.  Life cycle of connexins in health and disease. , 2006, The Biochemical journal.

[105]  G. Heusch,et al.  The antiarrhythmic dipeptide ZP1609 (danegaptide) when given at reperfusion reduces myocardial infarct size in pigs , 2013, Naunyn-Schmiedeberg's Archives of Pharmacology.

[106]  M. T. Ramirez,et al.  The Antiarrhythmic Peptide Rotigaptide (ZP123) Increases Connexin 43 Protein Expression in Neonatal Rat Ventricular Cardiomyocytes , 2006, Cell communication & adhesion.

[107]  K. Willecke,et al.  An Update on Connexin Genes and their Nomenclature in Mouse and Man , 2003, Cell communication & adhesion.

[108]  M. Bennett,et al.  Functional alterations in gap junction channels formed by mutant forms of connexin 32: evidence for loss of function as a pathogenic mechanism in the X-linked form of Charcot-Marie-Tooth disease , 2001, Brain Research.

[109]  J. Revel,et al.  Turnover and phosphorylation dynamics of connexin43 gap junction protein in cultured cardiac myocytes. , 1991, The Biochemical journal.

[110]  J. Gemel,et al.  N-terminal residues in Cx43 and Cx40 determine physiological properties of gap junction channels, but do not influence heteromeric assembly with each other or with Cx26 , 2006, Journal of Cell Science.

[111]  G. Morley,et al.  Structure of Connexin43 and its Regulation by pHi , 1997, Journal of cardiovascular electrophysiology.

[112]  A. Taylor,et al.  trans-dominant inhibition of connexin-43 by mutant connexin-26: implications for dominant connexin disorders affecting epidermal differentiation. , 2001, Journal of cell science.

[113]  Jiann-Jou Yang,et al.  Identification of Mutations in Members of the Connexin Gene Family as a Cause of Nonsyndromic Deafness in Taiwan , 2007, Audiology and Neurotology.

[114]  David L. Paul,et al.  Beyond the gap: functions of unpaired connexon channels , 2003, Nature Reviews Molecular Cell Biology.

[115]  Lidia Szczupak,et al.  Gap junctions , 2004, Molecular Neurobiology.

[116]  U. Grasshoff,et al.  Clinical and genetic variability of oculodentodigital dysplasia , 2006, Clinical genetics.

[117]  I. Plante,et al.  ODDD‐Linked Cx43 Mutants Reduce Endogenous Cx43 Expression and Function in Osteoblasts and Inhibit Late Stage Differentiation , 2008, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[118]  J. Degen,et al.  The conditional connexin43G138R mouse mutant represents a new model of hereditary oculodentodigital dysplasia in humans. , 2008, Human molecular genetics.

[119]  T. Steinberg,et al.  Connexin43 mediates direct intercellular communication in human osteoblastic cell networks. , 1993, The Journal of clinical investigation.

[120]  J. Gemel,et al.  Gap junction channels formed by coexpressed connexin40 and connexin43. , 2001, American journal of physiology. Heart and circulatory physiology.

[121]  D. Laird,et al.  Autosomal recessive GJA1 (Cx43) gene mutations cause oculodentodigital dysplasia by distinct mechanisms , 2013, Journal of Cell Science.

[122]  G. Fishman,et al.  Characterization of Gap Junction Proteins in the Bladder of Cx43 Mutant Mouse Models of Oculodentodigital Dysplasia , 2012, The Journal of Membrane Biology.

[123]  P. Gasparini,et al.  A novel GJA1 mutation causes oculodentodigital dysplasia without syndactyly , 2005, American journal of medical genetics. Part A.

[124]  G. Richard,et al.  Bigenic connexin mutations in a patient with hidrotic ectodermal dysplasia. , 2005, European journal of dermatology : EJD.

[125]  K. Devriendt,et al.  Novel GJA1 mutations in patients with oculo-dento-digital dysplasia (ODDD). , 2005, European journal of medical genetics.

[126]  A. Itro,et al.  Oculodentodigital dysplasia. A case report. , 2005, Minerva stomatologica.

[127]  So Nakagawa,et al.  Structure of the connexin 26 gap junction channel at 3.5 Å resolution , 2009, Nature.

[128]  M. Akiyama,et al.  Novel mutation p.Gly59Arg in GJB6 encoding connexin 30 underlies palmoplantar keratoderma with pseudoainhum, knuckle pads and hearing loss , 2009, The British journal of dermatology.

[129]  I. Plante,et al.  Milk Secretion and Ejection Are Impaired in the Mammary Gland of Mice Harboring a Cx43 Mutant While Expression and Localization of Tight and Adherens Junction Proteins Remain Unchanged1 , 2010, Biology of reproduction.

[130]  B. Isakson,et al.  Biological and biophysical properties of vascular connexin channels. , 2009, International review of cell and molecular biology.

[131]  E. Zackai,et al.  Congenital heart defects in oculodentodigital dysplasia: Report of two cases , 2013, American journal of medical genetics. Part A.

[132]  J. Degen,et al.  Structural and Functional Diversity of Connexin Genes in the Mouse and Human Genome , 2002, Biological chemistry.