A Comparative Study of AlGaN and InGaN Back-Barriers in Ultrathin-Barrier AlN/GaN Heterostructures

Investigations of the effects of back-barrier introduction on the two-dimensional electron gas (2DEG) of ultrathin-barrier AlN/GaN heterostructures with AlGaN and InGaN back-barriers are carried out using self-consistent solutions of 1-dimensional Schrödinger–Poisson equations. Inserted AlGaN and InGaN back-barriers are used to provide a good 2DEG confinement thanks to raising the conduction band edge of GaN buffer with respect to GaN channel layer. Therefore, in this paper the influence of these back-barrier layers on sheet carrier density, 2DEG confinement, and mobility are systematically and comparatively investigated. As a result of calculations, although sheet carrier density is found to decrease with InGaN back-barrier layer, it is not changed with AlGaN back-barrier layer for suggested optimise heterostructures. Obtained results can give some insights for further experimental studies.

[1]  S. Gökden Mobility of two‐dimensional electrons in an AlGaN/GaN modulation‐doped heterostructure , 2003 .

[2]  M. Shur,et al.  Monte Carlo simulation of electron transport in gallium nitride , 1993 .

[3]  Y. Cordier,et al.  AlGaN/GaN HEMTs with an InGaN back‐barrier grown by ammonia‐assisted molecular beam epitaxy , 2013 .

[4]  N. Balkan,et al.  The effect of scattering mechanisms on the low field mobility in GaN/AlGaN heterostructures , 2004 .

[5]  Dong Seup Lee,et al.  300-GHz InAlN/GaN HEMTs With InGaN Back Barrier , 2011, IEEE Electron Device Letters.

[6]  Amir Dabiran,et al.  Very high channel conductivity in low-defect AlN/GaN high electron mobility transistor structures , 2008 .

[7]  S. Denbaars,et al.  AlN/GaN and (Al,Ga)N/AlN/GaN two-dimensional electron gas structures grown by plasma-assisted molecular-beam epitaxy , 2001 .

[8]  Aldo Di Carlo,et al.  Elasticity theory of pseudomorphic heterostructures grown on substrates of arbitrary thickness , 2006 .

[9]  Izabella Grzegory,et al.  Elastic constants of gallium nitride , 1996 .

[10]  Keisuke Shinohara,et al.  Scaling of GaN HEMTs and Schottky Diodes for Submillimeter-Wave MMIC Applications , 2013, IEEE Transactions on Electron Devices.

[11]  Aldo Di Carlo,et al.  TiberCAD: towards multiscale simulation of optoelectronic devices , 2008, 2008 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD).

[12]  Shun Lien Chuang,et al.  k.p method for strained wurtzite semiconductors , 1996 .

[13]  A Pecchia,et al.  The Multiscale Paradigm in Electronic Device Simulation , 2011, IEEE Transactions on Electron Devices.

[14]  E. Kohn,et al.  High-sheet-charge–carrier-density AlInN∕GaN field-effect transistors on Si(111) , 2004 .

[15]  The role of ultrathin AlN barrier in the reduction in the hot electron and self-heating effects for GaN-based double-heterojunction high electron mobility transistors , 2010 .

[16]  Improved Performance of Highly Scaled AlGaN/GaN High-Electron-Mobility Transistors Using an AlN Back Barrier , 2013 .

[17]  B. Sarikavak-Lisesivdin Numerical optimization of two-dimensional electron gas in Mg x Zn1− x O/ZnO heterostructures (0.10 < x < 0.30) , 2013 .

[18]  M. Kasap,et al.  Electron Transport Properties of Two-Dimensional Electron Gas in BexZn1−xO/ZnO Heterostructures , 2015 .

[19]  David Vanderbilt,et al.  Spontaneous polarization and piezoelectric constants of III-V nitrides , 1997 .

[20]  Jerry R. Meyer,et al.  Band parameters for nitrogen-containing semiconductors , 2003 .

[21]  Jacek A. Majewski,et al.  Pyroelectric properties of Al(In)GaN/GaN hetero- and quantum well structures , 2002 .

[22]  M. Meneghini,et al.  High PAE high reliability AlN/GaN double heterostructure , 2015 .

[23]  Xiang Gao,et al.  InAlN/GaN HEMTs With AlGaN Back Barriers , 2011, IEEE Electron Device Letters.

[24]  Debdeep Jena,et al.  High-mobility window for two-dimensional electron gases at ultrathin AlN∕GaN heterojunctions , 2007 .

[25]  Optoelectronic Properties of Nanocolumn InGaN/GaN LEDs , 2012, IEEE Transactions on Electron Devices.

[26]  Michael S. Shur,et al.  Electron transport in AlGaN–GaN heterostructures grown on 6H–SiC substrates , 1998 .

[27]  G. Atmaca,et al.  A numerical study on subband structure of InxAl1−xN/GaN-based HEMT structures with low-indium (x<0.10) barrier layer , 2013 .

[28]  Nathalie Rolland,et al.  Effects of AlGaN Back Barrier on AlN/GaN-on-Silicon High-Electron-Mobility Transistors , 2011 .

[29]  R. Dimitrov,et al.  Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures , 2000 .

[30]  Y. Arakawa,et al.  MOCVD-grown InGaN-channel HEMT structures with electron mobility of over 1000cm2/Vs , 2004 .

[31]  S. Ganguly,et al.  Double-Channel AlGaN/GaN High Electron Mobility Transistor With Back Barriers , 2012, IEEE Electron Device Letters.

[32]  Z. J. Yang,et al.  Relationship of background carrier concentration and defects in GaN grown by metalorganic vapor phase epitaxy , 1997 .

[33]  Doo Hyeb Yoon,et al.  Self‐Consistent Subband Calculations of AlGaN/GaN Single Heterojunctions , 2002 .

[34]  Y. Hao,et al.  Superior transport properties of InGaN channel heterostructure with high channel electron mobility , 2016 .

[35]  Ekmel Ozbay,et al.  Scattering analysis of 2DEG carrier extracted by QMSA in undoped Al0.25Ga0.75N/GaN heterostructures , 2007 .

[36]  Alan Francis Wright,et al.  Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN , 1997 .

[37]  Nathalie Rolland,et al.  Demonstration of low leakage current and high polarization in ultrathin AlN/GaN high electron mobility transistors grown on silicon substrate , 2011 .

[38]  AlGaN/GaN high electron mobility transistors based on InGaN/GaN multiquantum-well structures , 2010 .

[39]  S. Keller,et al.  AlGaN/GaN high electron mobility transistors with InGaN back-barriers , 2006, IEEE Electron Device Letters.

[40]  J. Wurfl,et al.  Punchthrough-Voltage Enhancement of AlGaN/GaN HEMTs Using AlGaN Double-Heterojunction Confinement , 2008, IEEE Transactions on Electron Devices.