Resonances in a Chaotic Attractor Crisis of the Lorenz Flow

Local bifurcations of stationary points and limit cycles have successfully been characterized in terms of the critical exponents of these solutions. Lyapunov exponents and their associated covariant Lyapunov vectors have been proposed as tools for supporting the understanding of critical transitions in chaotic dynamical systems. However, it is in general not clear how the statistical properties of dynamical systems change across a boundary crisis during which a chaotic attractor collides with a saddle. This behavior is investigated here for a boundary crisis in the Lorenz flow, for which neither the Lyapunov exponents nor the covariant Lyapunov vectors provide a criterion for the crisis. Instead, the convergence of the time evolution of probability densities to the invariant measure, governed by the semigroup of transfer operators, is expected to slow down at the approach of the crisis. Such convergence is described by the eigenvalues of the generator of this semigroup, which can be divided into two families, referred to as the stable and unstable Ruelle–Pollicott resonances, respectively. The former describes the convergence of densities to the attractor (or escape from a repeller) and is estimated from many short time series sampling the state space. The latter is responsible for the decay of correlations, or mixing, and can be estimated from a long times series, invoking ergodicity. It is found numerically for the Lorenz flow that the stable resonances do approach the imaginary axis during the crisis, as is indicative of the loss of global stability of the attractor. On the other hand, the unstable resonances, and a fortiori the decay of correlations, do not flag the proximity of the crisis, thus questioning the usual design of early warning indicators of boundary crises of chaotic attractors and the applicability of response theory close to such crises.

[1]  D. Ruelle,et al.  Ergodic theory of chaos and strange attractors , 1985 .

[2]  R. F. Williams,et al.  Structural stability of Lorenz attractors , 1979 .

[3]  Valerio Lucarini,et al.  Stochastic Perturbations to Dynamical Systems: A Response Theory Approach , 2011, 1103.0237.

[4]  I. Tegen,et al.  Relative importance of climate and land use in determining present and future global soil dust emission , 2004 .

[5]  J. Eckmann,et al.  Liapunov Multipliers and Decay of Correlations in Dynamical Systems , 2003, nlin/0303002.

[6]  J. Neumann Proof of the Quasi-Ergodic Hypothesis. , 1932, Proceedings of the National Academy of Sciences of the United States of America.

[7]  B. O. Koopman,et al.  Hamiltonian Systems and Transformation in Hilbert Space. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[8]  Edward N. Lorenz,et al.  On the prevalence of aperiodicity in simple systems , 1979 .

[9]  Y. Berezansky,et al.  Functional Analysis: Vol. I , 1996 .

[10]  P. Hartman Ordinary Differential Equations , 1965 .

[11]  A. Saa,et al.  Lyapunov statistics and mixing rates for intermittent systems. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Giovanni Gallavotti,et al.  Nonequilibrium and Irreversibility , 2013, 1311.6448.

[13]  Viviane Baladi,et al.  The Quest for the Ultimate Anisotropic Banach Space , 2016, 1607.00654.

[14]  C. Reick,et al.  Linear response of the Lorenz system. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  V. I. Arnolʹd,et al.  Ergodic problems of classical mechanics , 1968 .

[16]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[17]  C. M. Place,et al.  Ordinary Differential Equations , 1982 .

[18]  Igor Mezic,et al.  Linearization in the large of nonlinear systems and Koopman operator spectrum , 2013 .

[19]  Pierre Gaspard,et al.  Chaos, Scattering and Statistical Mechanics , 1998 .

[20]  T. Lenton Early warning of climate tipping points , 2011 .

[21]  I Prigogine,et al.  From deterministic dynamics to probabilistic descriptions. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[22]  L. Young,et al.  Understanding Chaotic Dynamical Systems , 2013 .

[23]  Vitor Araujo,et al.  Three-Dimensional Flows , 2010 .

[24]  F. Lunkeit,et al.  Global instability in the Ghil–Sellers model , 2014, Climate Dynamics.

[25]  P. Gaspard,et al.  Liouvillian dynamics of the Hopf bifurcation. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  J. Yorke,et al.  Turbulence transition and the edge of chaos in pipe flow. , 2007, Physical review letters.

[27]  Y. Kuznetsov Elements of applied bifurcation theory (2nd ed.) , 1998 .

[28]  James A. Yorke,et al.  Preturbulence: A regime observed in a fluid flow model of Lorenz , 1979 .

[29]  Jason A. C. Gallas,et al.  Alignment of Lyapunov Vectors: A Quantitative Criterion to Predict Catastrophes? , 2016, Scientific Reports.

[30]  B. Cessac,et al.  Linear response, susceptibility and resonances in chaotic toy models , 2006, nlin/0612026.

[31]  T. Kleinen,et al.  Detection of climate system bifurcations by degenerate fingerprinting , 2004 .

[32]  Behaviour of Lyapunov exponents near crisis points in the dissipative standard map , 1988 .

[33]  J. S. Neal,et al.  超伝導ボルテックス-アンチボルテックス分子結晶での競合する対称性と結合断裂 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2007 .

[34]  L. Arnold Random Dynamical Systems , 2003 .

[35]  J. Marston,et al.  Statistics of the stochastically forced Lorenz attractor by the Fokker-Planck equation and cumulant expansions. , 2016, Physical review. E.

[36]  R. W. Rollins,et al.  Intermittent transient chaos at interior crises in the diode resonator , 1984 .

[37]  O. Junge,et al.  On the Approximation of Complicated Dynamical Behavior , 1999 .

[38]  Martin Hairer,et al.  On Malliavinʼs proof of Hörmanderʼs theorem , 2011, 1103.1998.

[39]  Ulrich Parlitz,et al.  Theory and Computation of Covariant Lyapunov Vectors , 2011, Journal of Nonlinear Science.

[40]  Mark Pollicott,et al.  On the rate of mixing of Axiom A flows , 1985 .

[41]  J. P. Lasalle The stability of dynamical systems , 1976 .

[42]  Valerio Lucarini,et al.  Crisis of the chaotic attractor of a climate model: a transfer operator approach , 2015, 1507.02228.

[43]  C. Schütte Conformational Dynamics: Modelling, Theory, Algorithm, and Application to Biomolecules , 1999 .

[44]  Patrick Billingsley,et al.  Statistical inference for Markov processes , 1961 .

[45]  Eric Vanden-Eijnden,et al.  Data-Based Inference of Generators for Markov Jump Processes Using Convex Optimization , 2009, Multiscale Model. Simul..

[46]  Mark Frederick Hoemmen,et al.  An Overview of Trilinos , 2003 .

[47]  F. Schmidt-Kaler,et al.  Nuclear charge radii of 7,9,10Be and the one-neutron halo nucleus 11Be. , 2008, Physical review letters.

[48]  L. Barreira,et al.  Chapter 2 – Smooth Ergodic Theory and Nonuniformly Hyperbolic Dynamics , 2006 .

[49]  M. Holschneider,et al.  Approximation of nonessential spectrum of transfer operators , 1999 .

[50]  Georges Griso,et al.  Multiscale Modeling of Elastic Waves: Theoretical Justification and Numerical Simulation of Band Gaps , 2008, Multiscale Model. Simul..

[51]  Stefan Klus,et al.  On the numerical approximation of the Perron-Frobenius and Koopman operator , 2015, 1512.05997.

[52]  Günter Radons,et al.  Hyperbolicity and the effective dimension of spatially extended dissipative systems. , 2008, Physical review letters.

[53]  Alexis Tantet,et al.  An early warning indicator for atmospheric blocking events using transfer operators. , 2015, Chaos.

[54]  Valerio Lucarini,et al.  Response Operators for Markov Processes in a Finite State Space: Radius of Convergence and Link to the Response Theory for Axiom A Systems , 2015, 1506.07065.

[55]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[56]  Yakov Pesin,et al.  Lectures on Partial Hyperbolicity and Stable Ergodicity , 2004 .

[57]  Relaxation and Noise in Chaotic Systems , 2002, nlin/0204068.

[58]  Davide Faranda,et al.  Statistical early-warning indicators based on autoregressive moving-average models , 2014 .

[59]  T. Eisner,et al.  Operator Theoretic Aspects of Ergodic Theory , 2015 .

[60]  H.-G. Schöpf V. I. Arnold and A. Avez, Ergodic Problems of Classical Mechanics. (The Mathematical Physics Monograph Series) IX + 286 S. m. Fig. New York/Amsterdam 1968. W. A. Benjamin, Inc. Preis geb. $ 14.75, brosch. $ 6.95 . , 1970 .

[61]  H. Storch,et al.  Statistical Analysis in Climate Research: Contents , 1999 .

[62]  I. Stewart,et al.  From attractor to chaotic saddle: a tale of transverse instability , 1996 .

[63]  Ramaswamy,et al.  Maximal Lyapunov exponent at crises. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[64]  Boris Hasselblatt,et al.  Introduction to the Modern Theory of Dynamical Systems: INTRODUCTION: WHAT IS LOW-DIMENSIONAL DYNAMICS? , 1995 .

[65]  D. Ruelle A review of linear response theory for general differentiable dynamical systems , 2009, 0901.0484.

[66]  ELEMENTS OF DIFFERENTIABLE DYNAMICS AND BIFURCATION THEORY , 1990 .

[67]  D. Ruelle,et al.  Resonances of chaotic dynamical systems. , 1986, Physical review letters.

[68]  P. Gaspard Diffusion, effusion, and chaotic scattering: An exactly solvable Liouvillian dynamics , 1992 .

[69]  Y. Kuznetsov Elements of Applied Bifurcation Theory , 2023, Applied Mathematical Sciences.

[70]  H. Brouwers Packing fraction of particles with a Weibull size distribution. , 2016, Physical review. E.

[71]  Valerio Lucarini,et al.  Evidence of Dispersion Relations for the Nonlinear Response of the Lorenz 63 System , 2008, 0809.0101.

[72]  Marten Scheffer,et al.  Slow Recovery from Perturbations as a Generic Indicator of a Nearby Catastrophic Shift , 2007, The American Naturalist.

[73]  V. Baladi Spectrum and Statistical Properties of Chaotic Dynamics , 2001 .

[74]  H. Chaté,et al.  Characterizing dynamics with covariant Lyapunov vectors. , 2007, Physical review letters.

[75]  S. Ulam Problems in modern mathematics , 1964 .

[76]  Michael C. Mackey,et al.  Chaos, Fractals, and Noise , 1994 .

[77]  Lai-Sang Young,et al.  What Are SRB Measures, and Which Dynamical Systems Have Them? , 2002 .

[78]  Martin Hairer,et al.  A simple framework to justify linear response theory , 2009, Nonlinearity.

[79]  C. Liverani Decay of correlations , 1995 .

[80]  V. Lucarini,et al.  Fluctuations, Response, and Resonances in a Simple Atmospheric Model , 2016, 1604.04386.

[81]  Hermann Held,et al.  The potential role of spectral properties in detecting thresholds in the Earth system: application to the thermohaline circulation , 2003 .

[82]  Bruno Eckhardt,et al.  Turbulence transition in pipe flow: some open questions , 2007 .

[83]  Michael Ghil,et al.  Rough parameter dependence in climate models and the role of Ruelle-Pollicott resonances , 2014, Proceedings of the National Academy of Sciences.

[84]  Wolfram Just,et al.  On the relation between Lyapunov exponents and exponential decay of correlations , 2012, 1209.2640.

[85]  R. Kubo Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems , 1957 .

[86]  Hasegawa,et al.  Unitarity and irreversibility in chaotic systems. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[87]  W. Tucker The Lorenz attractor exists , 1999 .

[88]  Igor Mezic,et al.  Global Stability Analysis Using the Eigenfunctions of the Koopman Operator , 2014, IEEE Transactions on Automatic Control.

[89]  E. Davies,et al.  Linear Operators and their Spectra , 2007 .

[90]  J. Yorke,et al.  Edge of chaos in a parallel shear flow. , 2006, Physical review letters.

[91]  P. Halmos Lectures on ergodic theory , 1956 .

[92]  S. Carpenter,et al.  Early-warning signals for critical transitions , 2009, Nature.

[93]  S. Lang Real and Functional Analysis , 1983 .

[94]  H. Storch,et al.  Statistical Analysis in Climate Research , 2000 .

[95]  Richard B. Lehoucq,et al.  Anasazi software for the numerical solution of large-scale eigenvalue problems , 2009, TOMS.

[96]  Clarence W. Rowley,et al.  A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition , 2014, Journal of Nonlinear Science.

[97]  Pierre Gaspard,et al.  Trace Formula for Noisy Flows , 2002 .

[98]  Gerhard Keller,et al.  Stability of the spectrum for transfer operators , 1999 .

[99]  J. Yorke,et al.  Crises, sudden changes in chaotic attractors, and transient chaos , 1983 .

[100]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[101]  Ruelle classical resonances and dynamical chaos: The three- and four-disk scatterers. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[102]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[103]  Gerhard Keller,et al.  Ruelle?Perron?Frobenius spectrum for Anosov maps , 2002 .

[104]  Peter E. Kloeden,et al.  Nonautonomous Dynamical Systems , 2011 .

[105]  R. Nagel,et al.  One-parameter semigroups for linear evolution equations , 1999 .

[106]  G. Nicolis,et al.  Spectral signature of the pitchfork bifurcation: Liouville equation approach. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[107]  G KonopelchenkoB,et al.  楕円のオイラー-ポアソン-ダルブー方程式,臨界点および可積分系 , 2013 .

[108]  C. Sparrow The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors , 1982 .

[109]  Carlangelo Liverani,et al.  Banach spaces adapted to Anosov systems , 2005, Ergodic Theory and Dynamical Systems.

[110]  V. Lucarini,et al.  Edge states in the climate system: exploring global instabilities and critical transitions , 2016, 1605.03855.

[111]  Gary Froyland,et al.  Estimating Long-Term Behavior of Flows without Trajectory Integration: The Infinitesimal Generator Approach , 2011, SIAM J. Numer. Anal..

[112]  Carlangelo Liverani,et al.  Smooth Anosov flows: Correlation spectra and stability , 2007 .

[113]  José F. Alves,et al.  Lyapunov exponents and rates of mixing for one-dimensional maps , 2004, Ergodic Theory and Dynamical Systems.

[114]  M. Markus,et al.  On-off intermittency and intermingledlike basins in a granular medium. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[115]  L. Hörmander Hypoelliptic second order differential equations , 1967 .

[116]  Prashant G. Mehta,et al.  Lyapunov Measure for Almost Everywhere Stability , 2008, IEEE Transactions on Automatic Control.

[117]  Gary Froyland,et al.  ON ULAM APPROXIMATION OF THE ISOLATED SPECTRUM AND EIGENFUNCTIONS OF HYPERBOLIC MAPS , 2006 .

[118]  Valerio Lucarini,et al.  On using extreme values to detect global stability thresholds in multi-stable systems: The case of transitional plane Couette flow , 2012, 1211.0510.