A fast elementary algorithm for computing the determinant of Toeplitz matrices

In recent years, a number of fast algorithms for computing the determinant of a Toeplitz matrix were developed. The fastest algorithm we know so far is of order k 2 log n + k 3 , where n is the number of rows of the Toeplitz matrix and k is the bandwidth size. This is possible because such a determinant can be expressed as the determinant of certain parts of the n -th power of a related k i? k companion matrix. In this paper, we give a new elementary proof of this fact, and provide various examples. We give symbolic formulas for the determinants of Toeplitz matrices in terms of the eigenvalues of the corresponding companion matrices when k is small.

[1]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[2]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[3]  J. Petronilho,et al.  On some tridiagonal k -Toeplitz matrices: algebraic and analytical aspects. applications , 2005 .

[4]  Arthur Lim,et al.  On product of companion matrices , 2011 .

[5]  J. Stoer,et al.  Introduction to Numerical Analysis , 2002 .

[6]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[7]  Ting-Zhu Huang,et al.  A note on computing the inverse and the determinant of a pentadiagonal Toeplitz matrix , 2008, Appl. Math. Comput..

[8]  Zubeyir Cinkir An elementary algorithm for computing the determinant of pentadiagonal Toeplitz matrices , 2012, J. Comput. Appl. Math..

[9]  William F. Trench,et al.  On the eigenvalue problem for Toeplitz band matrices , 1985 .

[10]  Moawwad E. A. El-Mikkawy,et al.  A fast algorithm for evaluating n th order tri-diagonal determinants , 2004 .

[11]  James D. Louck,et al.  The combinatorial power of the companion matrix , 1996 .

[12]  Jeffrey Mark McNally A fast algorithm for solving diagonally dominant symmetric pentadiagonal Toeplitz systems , 2010, J. Comput. Appl. Math..

[13]  David S. Watkins,et al.  Fundamentals of matrix computations , 1991 .

[14]  David J. Evans A Recursive Algorithm for Determining the Eigenvalues of a Quindiagonal Matrix , 1975, Comput. J..

[15]  Tomohiro Sogabe A fast numerical algorithm for the determinant of a pentadiagonal matrix , 2008, Appl. Math. Comput..

[16]  Moawwad E. A. El-Mikkawy,et al.  A computational algorithm for special nth-order pentadiagonal Toeplitz determinants , 2008, Appl. Math. Comput..

[17]  Roland A. Sweet,et al.  A recursive relation for the determinant of a pentadiagonal matrix , 1968, CACM.

[18]  Victor Y. Pan,et al.  Efficient algorithms for the evaluation of the eigenvalues of (block) banded Toeplitz matrices , 1988 .