Nanotubes of core/shell Cu/Cu2O as anode materials for Li-ion rechargeable batteries

A direct electrodeposition technique for Cu nanotube array fabrication and the subsequent conversion of the deposited Cu into Cu 2 O was developed. The Cu 2 O nanotube arrays showed high capacity, cyclability, and rate capability. The cycling performance of the Cu 2 O nanotubes showed a high level of structural integrity with capacity retention even after 94 cycles when cycled at 1C to 3C rates. The enhanced electrochemical performance of the Cu 2 O nanotubes came from a high surface area, electrolyte access, high electrical conductivity of Cu core support, and structural integrity of the oxide shell active material.

[1]  K. Fung,et al.  The electrochemical capacities and cycle retention of electrochemically deposited Cu2O thin film toward lithium , 2004 .

[2]  R. Inguanta,et al.  Template electrosynthesis of aligned Cu2O nanowires: Part I. Fabrication and characterization , 2008 .

[3]  J. Dahn,et al.  The Electrochemical Reaction of Lithium with Tin Studied By In Situ AFM , 2003 .

[4]  J. Tarascon,et al.  Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries , 2000, Nature.

[5]  Charles R. Martin,et al.  Nanomaterials in Li-Ion Battery Electrode Design , 2007 .

[6]  Ying Wang,et al.  Developments in Nanostructured Cathode Materials for High‐Performance Lithium‐Ion Batteries , 2008 .

[7]  P. Ramakrishnan,et al.  Metal hydride batteries research using nanostructured additives , 2001 .

[8]  G. Amatucci,et al.  Particle size and multiphase effects on cycling stability using tin-based materials , 2004 .

[9]  Bruno Scrosati,et al.  Nanomaterial-based Li-ion battery electrodes , 2001 .

[10]  James F. Rohan,et al.  Additive influence on Cu nanotube electrodeposition in anodised aluminium oxide templates , 2009 .

[11]  Heon-Cheol Shin,et al.  Three‐Dimensional Porous Copper–Tin Alloy Electrodes for Rechargeable Lithium Batteries , 2005 .

[12]  Sylvie Grugeon,et al.  Particle Size Effects on the Electrochemical Performance of Copper Oxides toward Lithium , 2001 .

[13]  M. Inaba,et al.  Irreversible capacity of electrodeposited Sn thin film anode , 2005 .

[14]  J. Tu,et al.  Preparation and electrochemical performances of cubic shape Cu2O as anode material for lithium ion batteries , 2007 .

[15]  J. Tarascon,et al.  High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications , 2006, Nature materials.

[16]  C. Mu,et al.  Uniform Metal Nanotube Arrays by Multistep Template Replication and Electrodeposition , 2004 .

[17]  Bing Tan,et al.  Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. , 2008, Nano letters.

[18]  Shih-Hsuan Yang,et al.  Thermal oxidation of Cu2S nanowires: A template method for the fabrication of mesoscopic CuxO (x = 1,2) wires , 2002 .