Approximation by Multiple Reenable Functions
暂无分享,去创建一个
[1] C. Micchelli,et al. On linear independence for integer translates of a finite number of functions , 1993, Proceedings of the Edinburgh Mathematical Society.
[2] Rong-Qing Jia,et al. A characterization of the approximation order of translation invariant spaces , 1991 .
[3] R. Estrada,et al. Introduction to the Theory of Distributions , 1994 .
[4] R. Jia,et al. Stability and linear independence associated with wavelet decompositions , 1993 .
[5] R. Jia. Shift-invariant spaces on the real line , 1997 .
[6] A. Ron. A characterization of the approximation order for multivariate spline spaces , 1991 .
[7] C. Micchelli,et al. Stationary Subdivision , 1991 .
[8] R. Jia. Subdivision Schemes in L p Spaces , 1995 .
[9] G. Strang,et al. Orthogonal multiwavelets with vanishing moments , 1994 .
[10] I. J. Schoenberg. Contributions to the Problem of Approximation of Equidistant Data by Analytic Functions , 1988 .
[11] Klaus Höllig,et al. Approximation order from bivariate ¹-cubics: a counterexample , 1983 .
[12] I. Daubechies,et al. Two-scale difference equations II. local regularity, infinite products of matrices and fractals , 1992 .
[13] Rong-Qing Jia,et al. Vector subdivision schemes and multiple wavelets , 1998, Math. Comput..
[14] C. D. Boor,et al. A sharp upper bound on the approximation order of smooth bivariate PP functions , 1993 .