Poisson cohomology and quantization.
暂无分享,去创建一个
[1] J. A. Schouten. On the differential operators of first order in tensor calculus , 1953 .
[2] C. Morosi,et al. A geometrical characterization of integrable Hamiltonian systems through the theory of Poisson-Nijenhuis manifolds, Quaderno S/19, Dipartimento di Matematica dell'Universita' di Milano , 1984 .
[3] Murray Gerstenhaber,et al. On the Deformation of Rings and Algebras , 1964 .
[4] K. Viswanath,et al. Calculus on Poisson Manifolds , 1988 .
[5] F. Berezin. Some remarks about the associated envelope of a Lie algebra , 1967 .
[6] S. Lie. Theorie der Transformationsgruppen I , 1880 .
[7] R. Penrose,et al. Cohomology and massless fields , 1981 .
[8] A. Neveu. Quantization of non-linear systems , 1977 .
[9] J. Koszul. Lectures on Fibre Bundles and Differential Geometry , 1987 .
[10] S. Lane. Hamiltonian Mechanics and Geometry , 1970 .
[11] W. Schmid,et al. Singular unitary representations and indefinite harmonic theory , 1983 .
[12] John Milnor,et al. On the Structure of Hopf Algebras , 1965 .
[13] J. Conn. Normal forms for smooth Poisson structures , 1985 .
[14] Irene Ya. Dorfman,et al. Dirac structures of integrable evolution equations , 1987 .
[15] M. J. Gotay. Poisson reduction and quantization for the n+1 photon , 1984 .
[16] F. Kamber,et al. Invariant differential operators and the cohomology of Lie algebra sheaves , 1971 .
[17] J. Schwartz. Nonlinear Functional Analysis , 1969 .
[18] Reduction techniques for infinite-dimensional Hamiltonian systems: Some ideas and applications , 1985 .
[19] Edward Witten,et al. Topological quantum field theory , 1988 .
[20] K. Mackenzie. Lie groupoids and Lie algebroids in Differential Geometry: REFERENCES , 1987 .
[21] W. Alan. Some remarks on dressing transformations , 1988 .
[22] G. Rinehart. DIFFERENTIAL FORMS ON GENERAL COMMUTATIVE ALGEBRAS , 1963 .
[23] J. Marsden,et al. Reduction of symplectic manifolds with symmetry , 1974 .
[24] S. Sternberg,et al. Symplectic Techniques in Physics , 1984 .
[25] Samuel Eilenberg,et al. Cohomology Theory of Lie Groups and Lie Algebras , 1948 .
[26] A. Weinstein,et al. Moments and Reduction for Symplectic Groupoids , 1988 .
[27] I. Gel'fand,et al. Hamiltonian operators and algebraic structures related to them , 1979 .
[28] J. Sniatycki. Application of geometric quantization in quantum mechanics , 1978 .
[29] S. Sternberg,et al. Symplectic reduction, BRS cohomology, and infinite-dimensional Clifford algebras , 1987 .
[30] B. Kostant. Quantization and unitary representations , 1970 .
[31] J. Conn. Normal forms for analytic Poisson structures , 1984 .
[32] M. Malliavin. Algèbre homologique et opérateurs différentiels , 1988 .
[33] D. Simms. On the Schrödinger equation given by geometric quantisation , 1978 .
[34] M. Atiyah. Complex analytic connections in fibre bundles , 1957 .
[35] C. Kassel. L'homologie cyclique des algèbres enveloppantes , 1988 .
[36] Valentin Lychagin,et al. Geometry of jet spaces and nonlinear partial differential equations , 1986 .
[37] Shlomo Sternberg,et al. Geometric quantization and multiplicities of group representations , 1982 .
[38] Alan Weinstein,et al. Reduction and quantization for singular momentum mappings , 1983 .
[39] J. Marsden. Applications of Global Analysis in Mathematical Physics , 1974 .
[40] B. Kostant,et al. Graded manifolds, graded Lie theory, and prequantization , 1977 .
[41] Bernard Malgrange,et al. Ideals of differentiable functions , 1966 .
[42] R. Palais. The cohomology of Lie rings , 1961 .
[43] J. Koszul. Crochet de Schouten-Nijenhuis et cohomologie , 1985 .
[44] Jean-Luc Brylinski,et al. A differential complex for Poisson manifolds , 1988 .
[45] B. Kostant,et al. Differential Forms on Regular Affine Algebras , 1962 .
[46] A. Weinstein. Symplectic groupoids and Poisson manifolds , 1987 .
[47] A. Weinstein. Coisotropic calculus and Poisson groupoids , 1988 .
[48] M. Karasev. ANALOGUES OF THE OBJECTS OF LIE GROUP THEORY FOR NONLINEAR POISSON BRACKETS , 1987 .
[49] J. Sniatycki. Constraints and quantization , 1983 .
[50] J. Sniatycki. Geometric quantization and quantum mechanics , 1980 .
[51] A. Nijenhuis. Jacobi-type identities for bilinear differential concomitants of certain tensor fields. II , 1955 .
[52] I. Gel'fand,et al. Hamiltonian operators and infinite-dimensional Lie algebras , 1981 .
[53] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[54] N. Woodhouse,et al. Lectures on Geometric Quantization , 1976 .
[55] Jerrold E. Marsden,et al. Properties of infinite dimensional Hamiltonian systems , 1974 .
[56] I. Gel'fand,et al. Hamiltonian operators and the classical Yang—Baxter equation , 1982 .