Poisson cohomology and quantization.

Let R be a commutative ring, and let A be a Poisson algebra over R. We construct an (R,A)-Lie algebra structure, in the sense of Rinehart, on the A-module of K\"ahler differentials of A depending naturally on A and the Poisson bracket. This gives rise to suitable algebraic notions of Poisson homology and cohomology for an arbitrary Poisson algebra. A geometric version thereof includes the canonical homology and Poisson cohomology of a Poisson manifold introduced by Brylinski, Koszul, and Lichnerowicz, and absorbes the latter in standard homological algebra by expressing them as Tor and Ext groups, respectively, over a suitable algebra of differential operators. Furthermore, the Poisson structure determines a closed 2-form in the complex computing Poisson cohomology. This 2-form generalizes the 2-form defining a symplectic structure on a smooth manifold; moreover, the class of that 2-form in Poisson cohomology generalizes the class in de Rham cohomology of a symplectic structure on a smooth manifold and appears as a crucial ingredient for the construction of suitable linear representations of A, viewed as a Lie algebra; representations of this kind occur in quantum theory. To describe this class and to construct the representations, we relate formal concepts of connection and curvature generalizing the classical ones with extensions of Lie algebras. We illustrate our results with a number of examples of Poisson algebras and with a quantization procedure for a relativistic particle with zero rest mass and spin zero.

[1]  J. A. Schouten On the differential operators of first order in tensor calculus , 1953 .

[2]  C. Morosi,et al.  A geometrical characterization of integrable Hamiltonian systems through the theory of Poisson-Nijenhuis manifolds, Quaderno S/19, Dipartimento di Matematica dell'Universita' di Milano , 1984 .

[3]  Murray Gerstenhaber,et al.  On the Deformation of Rings and Algebras , 1964 .

[4]  K. Viswanath,et al.  Calculus on Poisson Manifolds , 1988 .

[5]  F. Berezin Some remarks about the associated envelope of a Lie algebra , 1967 .

[6]  S. Lie Theorie der Transformationsgruppen I , 1880 .

[7]  R. Penrose,et al.  Cohomology and massless fields , 1981 .

[8]  A. Neveu Quantization of non-linear systems , 1977 .

[9]  J. Koszul Lectures on Fibre Bundles and Differential Geometry , 1987 .

[10]  S. Lane Hamiltonian Mechanics and Geometry , 1970 .

[11]  W. Schmid,et al.  Singular unitary representations and indefinite harmonic theory , 1983 .

[12]  John Milnor,et al.  On the Structure of Hopf Algebras , 1965 .

[13]  J. Conn Normal forms for smooth Poisson structures , 1985 .

[14]  Irene Ya. Dorfman,et al.  Dirac structures of integrable evolution equations , 1987 .

[15]  M. J. Gotay Poisson reduction and quantization for the n+1 photon , 1984 .

[16]  F. Kamber,et al.  Invariant differential operators and the cohomology of Lie algebra sheaves , 1971 .

[17]  J. Schwartz Nonlinear Functional Analysis , 1969 .

[18]  Reduction techniques for infinite-dimensional Hamiltonian systems: Some ideas and applications , 1985 .

[19]  Edward Witten,et al.  Topological quantum field theory , 1988 .

[20]  K. Mackenzie Lie groupoids and Lie algebroids in Differential Geometry: REFERENCES , 1987 .

[21]  W. Alan Some remarks on dressing transformations , 1988 .

[22]  G. Rinehart DIFFERENTIAL FORMS ON GENERAL COMMUTATIVE ALGEBRAS , 1963 .

[23]  J. Marsden,et al.  Reduction of symplectic manifolds with symmetry , 1974 .

[24]  S. Sternberg,et al.  Symplectic Techniques in Physics , 1984 .

[25]  Samuel Eilenberg,et al.  Cohomology Theory of Lie Groups and Lie Algebras , 1948 .

[26]  A. Weinstein,et al.  Moments and Reduction for Symplectic Groupoids , 1988 .

[27]  I. Gel'fand,et al.  Hamiltonian operators and algebraic structures related to them , 1979 .

[28]  J. Sniatycki Application of geometric quantization in quantum mechanics , 1978 .

[29]  S. Sternberg,et al.  Symplectic reduction, BRS cohomology, and infinite-dimensional Clifford algebras , 1987 .

[30]  B. Kostant Quantization and unitary representations , 1970 .

[31]  J. Conn Normal forms for analytic Poisson structures , 1984 .

[32]  M. Malliavin Algèbre homologique et opérateurs différentiels , 1988 .

[33]  D. Simms On the Schrödinger equation given by geometric quantisation , 1978 .

[34]  M. Atiyah Complex analytic connections in fibre bundles , 1957 .

[35]  C. Kassel L'homologie cyclique des algèbres enveloppantes , 1988 .

[36]  Valentin Lychagin,et al.  Geometry of jet spaces and nonlinear partial differential equations , 1986 .

[37]  Shlomo Sternberg,et al.  Geometric quantization and multiplicities of group representations , 1982 .

[38]  Alan Weinstein,et al.  Reduction and quantization for singular momentum mappings , 1983 .

[39]  J. Marsden Applications of Global Analysis in Mathematical Physics , 1974 .

[40]  B. Kostant,et al.  Graded manifolds, graded Lie theory, and prequantization , 1977 .

[41]  Bernard Malgrange,et al.  Ideals of differentiable functions , 1966 .

[42]  R. Palais The cohomology of Lie rings , 1961 .

[43]  J. Koszul Crochet de Schouten-Nijenhuis et cohomologie , 1985 .

[44]  Jean-Luc Brylinski,et al.  A differential complex for Poisson manifolds , 1988 .

[45]  B. Kostant,et al.  Differential Forms on Regular Affine Algebras , 1962 .

[46]  A. Weinstein Symplectic groupoids and Poisson manifolds , 1987 .

[47]  A. Weinstein Coisotropic calculus and Poisson groupoids , 1988 .

[48]  M. Karasev ANALOGUES OF THE OBJECTS OF LIE GROUP THEORY FOR NONLINEAR POISSON BRACKETS , 1987 .

[49]  J. Sniatycki Constraints and quantization , 1983 .

[50]  J. Sniatycki Geometric quantization and quantum mechanics , 1980 .

[51]  A. Nijenhuis Jacobi-type identities for bilinear differential concomitants of certain tensor fields. II , 1955 .

[52]  I. Gel'fand,et al.  Hamiltonian operators and infinite-dimensional Lie algebras , 1981 .

[53]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[54]  N. Woodhouse,et al.  Lectures on Geometric Quantization , 1976 .

[55]  Jerrold E. Marsden,et al.  Properties of infinite dimensional Hamiltonian systems , 1974 .

[56]  I. Gel'fand,et al.  Hamiltonian operators and the classical Yang—Baxter equation , 1982 .