SAR image denoising via Bayesian wavelet shrinkage based on heavy-tailed modeling

Synthetic aperture radar (SAR) images are inherently affected by multiplicative speckle noise, which is due to the coherent nature of the scattering phenomenon. This paper proposes a novel Bayesian-based algorithm within the framework of wavelet analysis, which reduces speckle in SAR images while preserving the structural features and textural information of the scene. First, we show that the subband decompositions of logarithmically transformed SAR images are accurately modeled by alpha-stable distributions, a family of heavy-tailed densities. Consequently, we exploit this a priori information by designing a maximum a posteriori (MAP) estimator. We use the alpha-stable model to develop a blind speckle-suppression processor that performs a nonlinear operation on the data and we relate this nonlinearity to the degree of non-Gaussianity of the data. Finally, we compare our proposed method to current state-of-the-art soft thresholding techniques applied on real SAR imagery and we quantify the achieved performance improvement.

[1]  Victor S. Frost,et al.  A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Mehrdad Soumekh,et al.  Synthetic Aperture Radar Signal Processing with MATLAB Algorithms , 1999 .

[3]  Göran Salomonsson,et al.  Image enhancement based on a nonlinear multiscale method , 1997, IEEE Trans. Image Process..

[4]  H. Arsenault,et al.  Properties of speckle integrated with a finite aperture and logarithmically transformed , 1976 .

[5]  竹中 茂夫 G.Samorodnitsky,M.S.Taqqu:Stable non-Gaussian Random Processes--Stochastic Models with Infinite Variance , 1996 .

[6]  Chrysostomos L. Nikias,et al.  Scalar quantisation of heavy-tailed signals , 2000 .

[7]  Seisuke Fukuda,et al.  Smoothing effect of wavelet-based speckle filtering: the Haar basis case , 1999, IEEE Trans. Geosci. Remote. Sens..

[8]  Ramesh A. Gopinath,et al.  Wavelet based speckle reduction with application to SAR based ATD/R , 1994, Proceedings of 1st International Conference on Image Processing.

[9]  Eero P. Simoncelli Bayesian Denoising of Visual Images in the Wavelet Domain , 1999 .

[10]  Aleksandra Pizurica,et al.  Despeckling SAR images using wavelets and a new class of adaptive shrinkage estimators , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[11]  Ioannis A. Koutrouvelis,et al.  Regression-Type Estimation of the Parameters of Stable Laws , 1980 .

[12]  Andrea Baraldi,et al.  A refined gamma MAP SAR speckle filter with improved geometrical adaptivity , 1995, IEEE Trans. Geosci. Remote. Sens..

[13]  E. Fama,et al.  Some Properties of Symmetric Stable Distributions , 1968 .

[14]  J. Goodman Some fundamental properties of speckle , 1976 .

[15]  R. Adler,et al.  A practical guide to heavy tails: statistical techniques and applications , 1998 .

[16]  H. Hirosawa,et al.  Suppression of speckle in synthetic aperture radar images using wavelet , 1998 .

[17]  A. JouanD Speckle Filtering of Sar Images -a Comparative Study between Complex-wavelet-based and Standard Filters , 1997 .

[18]  Corina da Costa Freitas,et al.  A model for extremely heterogeneous clutter , 1997, IEEE Trans. Geosci. Remote. Sens..

[19]  Alexander A. Sawchuk,et al.  Adaptive Noise Smoothing Filter for Images with Signal-Dependent Noise , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Gennady Samorodnitsky,et al.  Stable Processes and Related Topics , 1991 .

[21]  C. L. Nikias,et al.  Signal processing with alpha-stable distributions and applications , 1995 .

[22]  J. Nolan,et al.  Maximum likelihood estimation and diagnostics for stable distributions , 2001 .

[23]  M. Taqqu,et al.  Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance , 1995 .

[24]  Edward H. Adelson,et al.  Noise removal via Bayesian wavelet coring , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[25]  Jia Jie Bayesian denoising of visual images in the wavelet domain , 2003 .

[26]  Lance Kaplan,et al.  Analysis of multiplicative speckle models for template-based SAR ATR , 2001 .

[27]  B. Brorsen,et al.  Maximum likelihood estimates of sym-metric stable distribution parameters , 1990 .

[28]  Alin Achim,et al.  Novel Bayesian multiscale method for speckle removal in medical ultrasound images , 2001, IEEE Transactions on Medical Imaging.

[29]  Jong-Sen Lee,et al.  Digital Image Enhancement and Noise Filtering by Use of Local Statistics , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Douglas L. Jones,et al.  Line and boundary detection in speckle images , 1998, IEEE Trans. Image Process..

[31]  Mahmood R. Azimi-Sadjadi,et al.  Two-dimensional adaptive block Kalman filtering of SAR imagery , 1991, IEEE Trans. Geosci. Remote. Sens..

[32]  Charles V. Jakowatz,et al.  Phase gradient autofocus-a robust tool for high resolution SAR phase correction , 1994 .

[33]  S. Quegan,et al.  Understanding Synthetic Aperture Radar Images , 1998 .

[34]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[35]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[36]  D. Donoho,et al.  Translation-Invariant De-Noising , 1995 .

[37]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[38]  Fawwaz T. Ulaby,et al.  SAR speckle reduction using wavelet denoising and Markov random field modeling , 2002, IEEE Trans. Geosci. Remote. Sens..

[39]  LeeJong-Sen Digital Image Enhancement and Noise Filtering by Use of Local Statistics , 1980 .

[40]  Fawwaz T. Ulaby,et al.  Statistical properties of logarithmically transformed speckle , 2002, IEEE Trans. Geosci. Remote. Sens..

[41]  S. Mallat A wavelet tour of signal processing , 1998 .