A Rounding Algorithm for Approximating Minimum Manhattan Networks
暂无分享,去创建一个
[1] David Eppstein,et al. Spanning Trees and Spanners , 2000, Handbook of Computational Geometry.
[2] Éva Tardos,et al. A Strongly Polynomial Algorithm to Solve Combinatorial Linear Programs , 1986, Oper. Res..
[3] F. Cole. To the Best of Our Knowledge , 1979 .
[4] Joachim Gudmundsson,et al. Approximating a Minimum Manhattan Network , 2001, Nord. J. Comput..
[5] Takao Asano,et al. An Improved Algorithm for the Minimum Manhattan Network Problem , 2002, ISAAC.
[6] Giri Narasimhan,et al. Geometric spanner networks , 2007 .
[7] Frank K. Hwang,et al. The rectilinear steiner arborescence problem , 2005, Algorithmica.
[8] Alexander Wolff,et al. The minimum Manhattan network problem: Approximations and exact solutions , 2006, Comput. Geom..
[9] Martin Zachariasen,et al. A catalog of Hanan grid problems , 2001, Networks.
[10] Sebastian Seibert,et al. A 1.5-Approximation of the Minimal Manhattan Network Problem , 2005, ISAAC.
[11] Alexander Wolff,et al. The Minimum Manhattan Network Problem: A Fast Factor-3 Approximation , 2004, JCDCG.
[12] V. A. Trubin. Subclass of the Steiner problems on a plane with rectilinear metric , 1985 .
[13] Joachim Gudmundsson,et al. Approximating Minimum Manhattan Networks , 1999, RANDOM-APPROX.
[14] Lior Pachter,et al. Picking alignments from (steiner) trees , 2002, RECOMB '02.
[15] R. L. Francis,et al. Finding efficient solutions for rectilinear distance location problems efficiently , 1981 .
[16] Vijay V. Vazirani,et al. Approximation Algorithms , 2001, Springer Berlin Heidelberg.