An Unsupervised Segmentation With an Adaptive Number of Clusters Using the $SPAN/H/\alpha/A$ Space and the Complex Wishart Clustering for Fully Polarimetric SAR Data Analysis

In this paper, an unsupervised segmentation is proposed for fully polarimetric synthetic aperture radar (SAR) data analysis. The backscattering power SPAN combined with H/alpha/A is used to obtain the initial cluster centers. We use the Wishart test statistic to perform an agglomerative hierarchical clustering to obtain the segmentation results with different numbers of clusters. The appropriate number of clusters is automatically estimated using the data log-likelihood (Lm), and the resulting images with the estimated number of clusters are the final segmentation results. The experiments show that the SPAN has additional information that is not contained in H/alpha/A, and this information could be useful for the initialization. The number of clusters seems to be a crucial point for the segmentation, which will affect the segmentation performance. It is also shown that the data log-likelihood has the potential ability to reveal the inner structure of fully polarimetric SAR data.

[1]  Wen Hong,et al.  An Unsupervised Segmentation with an Adaptive Number of Clusters Using Cloude-Pottier Decomposition, Wishart Test Statistic and MCCV A lgorithm for Fully Polarimetric Sar Data Analysis , 2007 .

[2]  Ron Kwok,et al.  Classification of multi-look polarimetric SAR imagery based on complex Wishart distribution , 1994 .

[3]  M. Hellmann,et al.  A new approach for interpretation of SAR-data using polarimetric techniques , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[4]  Carlos López-Martínez,et al.  Polarimetric SAR speckle noise model , 2003, IEEE Trans. Geosci. Remote. Sens..

[5]  Q. Vuong Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses , 1989 .

[6]  Jong-Sen Lee,et al.  Polarimetric SAR speckle filtering and its implication for classification , 1999, IEEE Trans. Geosci. Remote. Sens..

[7]  Padhraic Smyth,et al.  Clustering Using Monte Carlo Cross-Validation , 1996, KDD.

[8]  Sang-Eun Park,et al.  Unsupervised Classification of Scattering Mechanisms in Polarimetric SAR Data Using Fuzzy Logic in Entropy and Alpha Plane , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Knut Conradsen,et al.  A test statistic in the complex Wishart distribution and its application to change detection in polarimetric SAR data , 2003, IEEE Trans. Geosci. Remote. Sens..

[10]  Thomas L. Ainsworth,et al.  Unsupervised classification of polarimetric synthetic aperture Radar images using fuzzy clustering and EM clustering , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Robert Tibshirani,et al.  Estimating the number of clusters in a data set via the gap statistic , 2000 .

[12]  F. Ulaby,et al.  Radar polarimetry for geoscience applications , 1990 .

[13]  David R. Anderson,et al.  Model Selection and Multimodel Inference , 2003 .

[14]  H. Skriver,et al.  Change detection in polarimetric SAR data and the complex Wishart distribution , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[15]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[16]  Laurent Ferro-Famil,et al.  Unsupervised terrain classification preserving polarimetric scattering characteristics , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Y. Yamaguchi,et al.  Pi-SAR image analysis using polarimetric scattering parameters and total power , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[18]  M. Hellmann,et al.  Classification of full polarimetric SAR-data using artificial neural networks and fuzzy algorithms , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[19]  Gabriel Vasile,et al.  Intensity-driven adaptive-neighborhood technique for polarimetric and interferometric SAR parameters estimation , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Wen Hong,et al.  Analysis of fully polarimetric SAR data based on the Cloude-Pottier decomposition and the complex Wishart classifier , 2007, 2007 IEEE International Geoscience and Remote Sensing Symposium.

[21]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[22]  Thomas L. Ainsworth,et al.  Unsupervised classification using polarimetric decomposition and the complex Wishart classifier , 1999, IEEE Trans. Geosci. Remote. Sens..

[23]  Hiroyoshi Yamada,et al.  Unsupervised Land Cover Classification Using H/alpha/TP Space Applied to POLSAR Image Analysis , 2004 .