Voronoi Diagrams of Moving Points
暂无分享,去创建一个
Leonidas J. Guibas | Joseph S. B. Mitchell | Thomas Roos | Gerhard Albers | L. Guibas | T. Roos | Joseph S. B. Mitchell | G. Albers | L. Guibas
[1] Bernard Chazelle,et al. An optimal convex hull algorithm in any fixed dimension , 1993, Discret. Comput. Geom..
[2] Thomas Roos. Maintaining Voronoi diagrams in parallel , 1994, 1994 Proceedings of the Twenty-Seventh Hawaii International Conference on System Sciences.
[3] Thomas Roos,et al. Voronoi Diagrams over Dynamic Scenes , 1993, Discret. Appl. Math..
[4] H. Davenport,et al. A Combinatorial Problem Connected with Differential Equations , 1965 .
[5] Micha Sharir,et al. Davenport-Schinzel sequences and their geometric applications , 1995, Handbook of Computational Geometry.
[6] Kevin Q. Brown,et al. Voronoi Diagrams from Convex Hulls , 1979, Inf. Process. Lett..
[7] V. Klee. On the complexity ofd- dimensional Voronoi diagrams , 1979 .
[8] Leonidas J. Guibas,et al. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.
[9] Leonidas J. Guibas,et al. Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams , 1983, STOC.
[10] Micha Sharir,et al. Nonlinearity of davenport—Schinzel sequences and of generalized path compression schemes , 1986, FOCS.
[11] M. Iri,et al. Construction of the Voronoi diagram for 'one million' generators in single-precision arithmetic , 1992, Proc. IEEE.
[12] Thomas Roos,et al. Tighter Bounds on Voronoi Diagrams of Moving Points , 1993, CCCG.
[13] Jon M. Kleinberg,et al. On dynamic Voronoi diagrams and the minimum Hausdorff distance for point sets under Euclidean motion in the plane , 1992, SCG '92.
[14] Kenneth L. Clarkson,et al. Safe and effective determinant evaluation , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.
[15] Herbert Edelsbrunner,et al. Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.
[16] Thomas Roos,et al. Voronoi Diagrams of Moving Points in Higher Dimensional Spaces , 1992, SWAT.
[17] Raimund Seidel,et al. Linear programming and convex hulls made easy , 1990, SCG '90.
[18] Takeshi Tokuyama,et al. On minimum and maximum spanning trees of linearly moving points , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.
[19] Franz Aurenhammer,et al. Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.
[20] M. Atallah. Some dynamic computational geometry problems , 1985 .
[21] Micha Sharir,et al. Sharp upper and lower bounds on the length of general Davenport-Schinzel sequences , 2015, J. Comb. Theory, Ser. A.
[22] Leonidas J. Guibas,et al. A linear-time algorithm for computing the voronoi diagram of a convex polygon , 1989, Discret. Comput. Geom..
[23] Richard C. T. Lee,et al. Voronoi diagrams of moving points in the plane , 1990, Int. J. Comput. Geom. Appl..
[24] Hartmut Noltemeier,et al. Dynamic Voronoi Diagrams in Motion Planning , 1991, Workshop on Computational Geometry.
[25] Richard C. T. Lee,et al. Voronoi Diagrams of Moving Points in the Plane , 1990, FSTTCS.