Verteilte Optimierung: Anwendungen in der Modellprädiktiven Regelung

Zusammenfassung Verteilte Optimierungsverfahren wie die duale Dekomposition oder die Alternating Direction Method of Multipliers (ADMM) erleben in den letzten Jahren ein erneutes steigendes Interesse in den unterschiedlichsten Anwendungen. Die zunehmende Vernetzung von Servern oder Mikrocontrollern weltweit sowie die Größe von heutigen Datensätzen liefern dabei die Grundlage für die Nachfrage nach iterativen, parallelisierbaren Optimierungsverfahren. In dieser Arbeit stellen wir verteilte Optimierungsalgorithmen und ihre Anwendungen bei der Berechnung von Zustandsrückführungen mithilfe der Modellprädiktiven Regelung vor. Wir konzentrieren uns auf die Systemdynamik sowie die Vernetzung der Systeme bei der Anwendbarkeit der Algorithmen. Darüber hinaus untersuchen wir die Algorithmen auf ihre Kommunikationsstruktur, den Austausch sensibler Daten, die Skalierbarkeit und die Flexibilität.

[1]  M. Fortin,et al.  On decomposition - coordination methods using an augmented Lagrangian , 1983 .

[2]  Moritz Diehl,et al.  An Augmented Lagrangian Based Algorithm for Distributed NonConvex Optimization , 2016, SIAM J. Optim..

[3]  Andreas Kugi,et al.  Stability and Incremental Improvement of Suboptimal MPC Without Terminal Constraints , 2010, IEEE Transactions on Automatic Control.

[4]  Stephen J. Wright,et al.  Cooperative distributed model predictive control , 2010, Syst. Control. Lett..

[5]  Martin J. Wainwright,et al.  Dual Averaging for Distributed Optimization: Convergence Analysis and Network Scaling , 2010, IEEE Transactions on Automatic Control.

[6]  Karl Worthmann,et al.  A Distributed Optimization Algorithm for the Predictive Control of Smart Grids , 2016, IEEE Transactions on Automatic Control.

[7]  Asuman Ozdaglar,et al.  Cooperative distributed multi-agent optimization , 2010, Convex Optimization in Signal Processing and Communications.

[8]  Jacquelien M. A. Scherpen,et al.  Distributed Control of the Power Supply-Demand Balance , 2013, IEEE Transactions on Smart Grid.

[9]  Ion Necoara,et al.  Efficient parallel coordinate descent algorithm for convex optimization problems with separable constraints: Application to distributed MPC , 2013, 1302.3092.

[10]  Alexandre M. Bayen,et al.  Distributed optimal charging of electric vehicles for demand response and load shaping , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[11]  Stephen J. Wright,et al.  Distributed MPC Strategies With Application to Power System Automatic Generation Control , 2008, IEEE Transactions on Control Systems Technology.

[12]  Stephen P. Boyd,et al.  Proximal Algorithms , 2013, Found. Trends Optim..

[13]  Anna Scaglione,et al.  Distributed Constrained Optimization by Consensus-Based Primal-Dual Perturbation Method , 2013, IEEE Transactions on Automatic Control.

[14]  Harvey J. Everett Generalized Lagrange Multiplier Method for Solving Problems of Optimum Allocation of Resources , 1963 .

[15]  Stephen P. Boyd,et al.  A Splitting Method for Optimal Control , 2013, IEEE Transactions on Control Systems Technology.

[16]  João M. F. Xavier,et al.  Distributed Optimization With Local Domains: Applications in MPC and Network Flows , 2013, IEEE Transactions on Automatic Control.

[17]  Daniel Pérez Palomar,et al.  Demand-Side Management via Distributed Energy Generation and Storage Optimization , 2013, IEEE Transactions on Smart Grid.

[18]  Wolfgang Marquardt,et al.  Sensitivity-based coordination in distributed model predictive control , 2011 .

[19]  Lars Grüne,et al.  Approximation Properties of Receding Horizon Optimal Control , 2016 .

[20]  M. Diehl,et al.  Real-Time Iterations for Nonlinear Optimal Feedback Control , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[21]  Karl Worthmann,et al.  Towards price-based predictive control of a small-scale electricity network , 2020, Int. J. Control.

[22]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[23]  Bart De Schutter,et al.  Accelerated gradient methods and dual decomposition in distributed model predictive control , 2013, Autom..

[24]  Johan A. K. Suykens,et al.  Application of a Smoothing Technique to Decomposition in Convex Optimization , 2008, IEEE Transactions on Automatic Control.

[25]  L. Grüne,et al.  Nonlinear Model Predictive Control : Theory and Algorithms. 2nd Edition , 2011 .

[26]  Karl Worthmann,et al.  Hierarchical distributed ADMM for predictive control with applications in power networks , 2018, IFAC J. Syst. Control..

[27]  Anders Rantzer,et al.  Distributed Model Predictive Control with suboptimality and stability guarantees , 2010, 49th IEEE Conference on Decision and Control (CDC).

[28]  George B. Dantzig,et al.  Decomposition Principle for Linear Programs , 1960 .

[29]  Bo Wahlberg,et al.  An ADMM algorithm for solving ℓ1 regularized MPC , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[30]  Manfred Morari,et al.  Computational aspects of distributed optimization in model predictive control , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[31]  Chong Jin Ong,et al.  Distributed Model Predictive Control of linear discrete-time systems with local and global constraints , 2017, Autom..

[32]  Knut Graichen,et al.  Distributed model predictive control for continuous‐time nonlinear systems based on suboptimal ADMM , 2017, Optimal Control Applications and Methods.

[33]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[34]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[35]  James E. Braun,et al.  Distributed model predictive control via Proximal Jacobian ADMM for building control applications , 2017, 2017 American Control Conference (ACC).

[36]  Jacques F. Benders,et al.  Partitioning procedures for solving mixed-variables programming problems , 2005, Comput. Manag. Sci..

[37]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[38]  D. Gabay Applications of the method of multipliers to variational inequalities , 1983 .