Nanolayered CoCrFeNi/Graphene Composites with High Strength and Crack Resistance

Emerging high-entropy alloy (HEA) films achieve high strength but generally show ineludible brittle fractures, strongly restricting their micro/nano-mechanical and functional applications. Nanolayered (NL) CoCrFeNi/graphene composites are elaborately fabricated via magnetron sputtering and the transfer process. It is uncovered that NL CoCrFeNi/graphene composite pillars exhibit a simultaneous ultra-high strength of 4.73 GPa and considerable compressive plasticity of over 20%. Detailed electron microscope observations and simulations reveal that the monolayer graphene interface can effectively block the crack propagation and stimulate dislocations to accommodate further deformation. Our findings open avenues for the fabrication of high-performance, HEA-based composites, thereby addressing the challenges and unmet needs in flexible electronics and mechanical metamaterials.

[1]  Xu Zhang,et al.  Deformation Mechanism of Depositing Amorphous Cu-Ta Alloy Film via Nanoindentation Test , 2022, Nanomaterials.

[2]  Xiaofu Zhang,et al.  Magnetron co-sputtering synthesis and nanoindentation studies of nanocrystalline (TiZrHf)x(NbTa)1−x high-entropy alloy thin films , 2021, Nano Research.

[3]  Yufan Zhao,et al.  The metastable constituent effects on size-dependent deformation behavior of nanolaminated micropillars: Cu/FeCoCrNi vs Cu/CuZr , 2021 .

[4]  Yunfei Xue,et al.  Deformation Mechanisms and Remarkable Strain Hardening in Single-Crystalline High-Entropy-Alloy Micropillars/Nanopillars. , 2021, Nano letters.

[5]  Yunqing Tang,et al.  Nano-tribological behavior of high-entropy alloys CrMnFeCoNi and CrFeCoNi under different conditions: A molecular dynamics study , 2020, Wear.

[6]  Shijun Zhao,et al.  Microalloyed medium-entropy alloy (MEA) composite nanolattices with ultrahigh toughness and cyclability , 2020 .

[7]  R. Spolenak,et al.  Micro-compression studies of face-centered cubic and body-centered cubic high-entropy alloys: Size-dependent strength, strain rate sensitivity, and activation volumes , 2020 .

[8]  Han Yang,et al.  In situ mechanical characterization of silver nanowire/graphene hybrids films for flexible electronics , 2020, International Journal of Smart and Nano Materials.

[9]  Yang Lu,et al.  Size dependency in stacking fault-mediated ultrahard high-entropy alloy thin films , 2020 .

[10]  Yang Lu,et al.  Heavily twinned CoCrNi medium-entropy alloy with superior strength and crack resistance , 2020, Materials Science and Engineering: A.

[11]  Yang Lu,et al.  Elastic straining of free-standing monolayer graphene , 2020, Nature Communications.

[12]  Yunzhi Wang,et al.  Generalized Stacking Fault Energy of Al-Doped CrMnFeCoNi High-Entropy Alloy , 2019, Nanomaterials.

[13]  Peifeng Li,et al.  In situ tensile fracturing of multilayer graphene nanosheets for their in-plane mechanical properties , 2019, Nanotechnology.

[14]  Yang Lu,et al.  Nanomechanics of low-dimensional materials for functional applications , 2019 .

[15]  D. Farkas,et al.  Model interatomic potentials and lattice strain in a high-entropy alloy , 2018, Journal of Materials Research.

[16]  Jun Sun,et al.  Ultrastrong Al0.1CoCrFeNi high-entropy alloys at small scales: effects of stacking faults vs. nanotwins. , 2018, Nanoscale.

[17]  Jian Song,et al.  Nanocrystalline high-entropy alloy (CoCrFeNiAl 0.3 ) thin-film coating by magnetron sputtering , 2017 .

[18]  Yang Lu,et al.  Microstructure, Mechanical and Corrosion Behaviors of CoCrFeNiAl0.3 High Entropy Alloy (HEA) Films , 2017 .

[19]  Yang Wang,et al.  Size effects on the mechanical properties of nanocrystalline NbMoTaW refractory high entropy alloy thin films , 2017 .

[20]  Zan Li,et al.  Enhanced dislocation obstruction in nanolaminated graphene/Cu composite as revealed by stress relaxation experiments , 2017 .

[21]  R. Raghavan,et al.  Orientation-dependent mechanical behaviour of electrodeposited copper with nanoscale twins. , 2016, Nanoscale.

[22]  K. Lu Stabilizing nanostructures in metals using grain and twin boundary architectures , 2016 .

[23]  Bernd Gludovatz,et al.  Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures , 2016, Nature Communications.

[24]  Di Zhang,et al.  Enhanced Mechanical Properties of Graphene (Reduced Graphene Oxide)/Aluminum Composites with a Bioinspired Nanolaminated Structure. , 2015, Nano letters.

[25]  R. Spolenak,et al.  Ultrastrong ductile and stable high-entropy alloys at small scales , 2015, Nature Communications.

[26]  R. Ritchie,et al.  A fracture-resistant high-entropy alloy for cryogenic applications , 2014, Science.

[27]  K. Dahmen,et al.  Microstructures and properties of high-entropy alloys , 2014 .

[28]  Yi Cui,et al.  Strengthening effect of single-atomic-layer graphene in metal–graphene nanolayered composites , 2013, Nature Communications.

[29]  J. Yeh,et al.  Structure and properties of two Al-Cr-Nb-Si-Ti high-entropy nitride coatings , 2013 .

[30]  Jun Sun,et al.  Grain-size-dependent zero-strain mechanism for twinning in copper , 2012 .

[31]  T. Tsui,et al.  Fabrication and buckling behavior of polycrystalline palladium, cobalt, and rhodium nanostructures , 2012 .

[32]  Jun Sun,et al.  Length-scale-dependent deformation and fracture behavior of Cu/X (X = Nb, Zr) multilayers: The constraining effects of the ductile phase on the brittle phase , 2011 .

[33]  D. Miracle,et al.  Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys , 2011 .

[34]  Kwang S. Kim,et al.  Roll-to-roll production of 30-inch graphene films for transparent electrodes. , 2010, Nature nanotechnology.

[35]  Huajian Gao,et al.  Dislocation nucleation governed softening and maximum strength in nano-twinned metals , 2010, Nature.

[36]  Julia R. Greer,et al.  Tensile and compressive behavior of tungsten, molybdenum, tantalum and niobium at the nanoscale , 2010 .

[37]  Jun Sun,et al.  Strong crystal size effect on deformation twinning , 2010, Nature.

[38]  Jien-Wei Yeh,et al.  Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon , 2008 .

[39]  Amit Misra,et al.  Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites , 2005 .

[40]  P. Erhart,et al.  Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide , 2005 .

[41]  Philip Holmes,et al.  Constrained euler buckling , 1997 .