A Quasi-Polynomial Black-Box Algorithm for Fixed Point Evaluation

[1]  Somesh Jha,et al.  An Improved Algorithm for the Evaluation of Fixpoint Expressions , 1994, Theor. Comput. Sci..

[2]  Marcin Jurdzi'nski,et al.  A Universal Attractor Decomposition Algorithm for Parity Games , 2020, ArXiv.

[3]  Scott A. Smolka,et al.  On the parallel complexity of model checking in the modal mu-calculus , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.

[4]  Hugo Gimbert,et al.  A short proof of correctness of the quasi-polynomial time algorithm for parity games , 2017, ArXiv.

[5]  A. Arnold,et al.  Rudiments of μ-calculus , 2001 .

[6]  Marcin Jurdzinski,et al.  Succinct progress measures for solving parity games , 2017, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[7]  Igor Walukiewicz,et al.  Permissive strategies: from parity games to safety games , 2002, RAIRO Theor. Informatics Appl..

[8]  Uri Zwick,et al.  A deterministic subexponential algorithm for solving parity games , 2006, SODA '06.

[9]  Paul W. Goldberg,et al.  The complexity of computing a Nash equilibrium , 2006, STOC '06.

[10]  Lutz Schröder,et al.  Computing Nested Fixpoints in Quasipolynomial Time , 2019, ArXiv.

[11]  Igor Walukiewicz,et al.  Monadic Second Order Logic on Tree-Like Structures , 1996, STACS.

[12]  Sanjay Jain,et al.  An ordered approach to solving parity games in quasi polynomial time and quasi linear space , 2017, SPIN.

[13]  Thomas Colcombet,et al.  Universal Graphs and Good for Games Automata: New Tools for Infinite Duration Games , 2019, FoSSaCS.

[14]  Daniel Hausmann,et al.  Quasipolynomial Computation of Nested Fixpoints , 2019 .

[15]  Krishnendu Chatterjee,et al.  Quasipolynomial Set-Based Symbolic Algorithms for Parity Games , 2018, LPAR.

[16]  Marcin Jurdzinski,et al.  Universal trees grow inside separating automata: Quasi-polynomial lower bounds for parity games , 2018, SODA.

[17]  Helmut Seidl Fast and Simple Nested Fixpoints , 1996, Inf. Process. Lett..

[18]  A. Prasad Sistla,et al.  On model checking for the µ-calculus and its fragments , 2001, Theor. Comput. Sci..

[19]  E. Emerson,et al.  Tree Automata, Mu-Calculus and Determinacy (Extended Abstract) , 1991, FOCS 1991.

[20]  Pawel Parys Some results on complexity of µ-calculus evaluation in the black-box model , 2013, RAIRO Theor. Informatics Appl..

[21]  Karoliina Lehtinen,et al.  A modal μ perspective on solving parity games in quasi-polynomial time , 2018, LICS.

[22]  Marcin Jurdziński,et al.  Deciding the Winner in Parity Games is in UP \cap co-Up , 1998, Inf. Process. Lett..

[23]  Wieslaw Zielonka,et al.  Infinite Games on Finitely Coloured Graphs with Applications to Automata on Infinite Trees , 1998, Theor. Comput. Sci..

[24]  Cristian S. Calude,et al.  Deciding parity games in quasipolynomial time , 2017, STOC.

[25]  Robert McNaughton,et al.  Infinite Games Played on Finite Graphs , 1993, Ann. Pure Appl. Logic.

[26]  Pawel Parys,et al.  Parity Games: Zielonka's Algorithm in Quasi-Polynomial Time , 2019, MFCS.

[27]  Marcin Jurdzinski,et al.  Small Progress Measures for Solving Parity Games , 2000, STACS.