Superpotentials for Quiver Gauge Theories

We compute superpotentials for quiver gauge theories arising from marginal D-Brane decay on collapsed del Pezzo cycles S in a Calabi-Yau X. This is done using the machinery of A{sub {infinity}} products in the derived category of coherent sheaves of X, which in turn is related to the derived category of S and quiver path algebras. We confirm that the superpotential is what one might have guessed from analyzing the moduli space, i.e., it is linear in the fields corresponding to the Exts of the quiver and that each such Ext multiplies a polynomial in Exts equal to precisely the relation represented by the Ext.

[1]  Kristian D. Kennaway,et al.  Brane dimers and quiver gauge theories , 2005, hep-th/0504110.

[2]  Sheldon Katz,et al.  Computation of Superpotentials for D-Branes , 2004, hep-th/0412209.

[3]  M. Douglas,et al.  The Spectrum of $BPS$ Branes on a Noncompact Calabi-Yau , 2000, hep-th/0003263.

[4]  P. Aspinwall D-Branes, Pi-Stability and Theta-Stability , 2004, hep-th/0407123.

[5]  Ilarion V. Melnikov,et al.  D-branes on vanishing del Pezzo surfaces , 2004, hep-th/0405134.

[6]  C. Herzog Seiberg duality is an exceptional mutation , 2004, hep-th/0405118.

[7]  P. Aspinwall D-Branes on Calabi-Yau Manifolds , 2004, hep-th/0403166.

[8]  C. Lazaroiu,et al.  Superpotentials, A ∞ Relations and WDVV Equations for Open Topological Strings , 2004, hep-th/0402110.

[9]  C. Herzog Exceptional Collections and del Pezzo Gauge Theories , 2003, hep-th/0310262.

[10]  C. Herzog,et al.  Dibaryons from Exceptional Collections , 2003, hep-th/0306298.

[11]  Yang-Hui He,et al.  Unhiggsing the del Pezzo , 2002, hep-th/0209228.

[12]  Yang-Hui He,et al.  Quiver theories, soliton spectra and Picard-Lefschetz transformations , 2002, hep-th/0206152.

[13]  P. Aspinwall A point's point of view of stringy geometry , 2002, hep-th/0203111.

[14]  M. Wijnholt Large Volume Perspective on Branes at Singularities , 2002, hep-th/0212021.

[15]  S. Katz,et al.  D-branes, open string vertex operators, and Ext groups , 2002, hep-th/0208104.

[16]  S. Katz,et al.  A Geometric unification of dualities , 2001, hep-th/0110028.

[17]  Yang-Hui He,et al.  Toric duality as Seiberg duality and brane diamonds , 2001, hep-th/0109063.

[18]  M. Plesser,et al.  Toric duality is Seiberg duality , 2001, hep-th/0109053.

[19]  A. Iqbal,et al.  Quiver theories from D6 branes via mirror symmetry , 2001, hep-th/0108137.

[20]  Yang-Hui He,et al.  Phase structure of D-brane gauge theories and toric duality , 2001, hep-th/0104259.

[21]  A. Lawrence,et al.  Derived Categories and Zero-Brane Stability , 2001, hep-th/0104147.

[22]  M. Douglas,et al.  D-branes, categories and N=1 supersymmetry , 2000, hep-th/0011017.

[23]  Yang-Hui He,et al.  D-brane gauge theories from toric singularities and toric duality , 2000, hep-th/0003085.

[24]  Richard P. Thomas,et al.  Braid group actions on derived categories of coherent sheaves , 2000, math/0001043.

[25]  C. Lazaroiu,et al.  D3-branes on partial resolutions of abelian quotient singularities of Calabi–Yau threefolds , 1999, hep-th/9907186.

[26]  J. Gomis,et al.  Fractional branes and boundary states in orbifold theories , 1999, hep-th/9906242.

[27]  M. Douglas,et al.  D-branes on the Quintic , 1999, hep-th/9906200.

[28]  C. Bachas on D-branes , 1999 .

[29]  D. Morrison,et al.  Non-spherical horizons, I , 1998, hep-th/9810201.

[30]  E. Witten,et al.  Superconformal field theory on threebranes at a Calabi-Yau singularity , 1998, hep-th/9807080.

[31]  M. Douglas,et al.  Fractional branes and wrapped branes , 1997, hep-th/9712230.

[32]  Clifford V. Johnson,et al.  Aspects of type IIB theory on asymptotically locally Euclidean spaces , 1997 .

[33]  Clifford V. Johnson,et al.  Aspects of Type IIB Theory on ALE Spaces , 1996, hep-th/9610140.

[34]  M. Douglas,et al.  D-branes, quivers, and ALE instantons , 1996, hep-th/9603167.

[35]  E. Witten Chern-Simons gauge theory as a string theory , 1992, hep-th/9207094.

[36]  A. Bondal,et al.  REPRESENTATION OF ASSOCIATIVE ALGEBRAS AND COHERENT SHEAVES , 1990 .

[37]  A. Bondal Helices and Vector Bundles: Seminaire Rudakov: Helixes, Representations of Quivers and Koszul Algebras , 1990 .

[38]  T. Willmore Algebraic Geometry , 1973, Nature.