A lower bound on the average error of vector quantizers

A lower bound is proposed for the mean-squared error of an n -dimensional vector quantizer with a large number of output points.

[1]  L. Tóth Lagerungen in der Ebene auf der Kugel und im Raum , 1953 .

[2]  L. Fejes Tóth Kreisausfüllungen der hyperbolischen Ebene , 1953 .

[3]  C. A. Rogers The Packing of Equal Spheres , 1958 .

[4]  H. Coxeter,et al.  Covering space with equal spheres , 1959 .

[5]  L. F. Tóth Sur la représentation d'une population infinie par un nombre fini d'éléments , 1959 .

[6]  C. A. Rogers An Asymptotic Expansion for Certain Schläfli Functions , 1961 .

[7]  J. R. Parrish,et al.  Packing of Spheres , 1961, Nature.

[8]  J. Leech Some Sphere Packings in Higher Space , 1964, Canadian Journal of Mathematics.

[9]  J. Leech Notes on Sphere Packings , 1967, Canadian Journal of Mathematics.

[10]  N. Sloane,et al.  Sphere Packings and Error-Correcting Codes , 1971, Canadian Journal of Mathematics.

[11]  K. Böröczky Packing of spheres in spaces of constant curvature , 1978 .

[12]  Allen Gersho,et al.  Asymptotically optimal block quantization , 1979, IEEE Trans. Inf. Theory.

[13]  N. J. A. Sloane,et al.  New Bounds on the Number of Unit Spheres That Can Touch a Unit Sphere in n Dimensions , 1979, J. Comb. Theory, Ser. A.

[14]  N. J. A. Sloane,et al.  Voronoi regions of lattices, second moments of polytopes, and quantization , 1982, IEEE Trans. Inf. Theory.

[15]  Donald J. Newman,et al.  The hexagon theorem , 1982, IEEE Trans. Inf. Theory.

[16]  Paul L. Zador,et al.  Asymptotic quantization error of continuous signals and the quantization dimension , 1982, IEEE Trans. Inf. Theory.

[17]  N. Sloane,et al.  The Optimal Lattice Quantizer in Three Dimensions , 1983 .

[18]  N. Sloane,et al.  On the Voronoi Regions of Certain Lattices , 1984 .